11 research outputs found

    Poiseuille et l’écoulement des liquides dans les capillaires

    Get PDF
    Jean-Louis Marie Poiseuille (1797, Paris-1869, Paris), médecin physiologiste français, entre en 1815 à l'École polytechnique, qui ferme provisoirement en avril 1816 pour des raisons politiques liées à la Restauration. Ne reprenant pas ses études à Polytechnique, il décide de se consacrer à l'étude de la microcirculation sanguine. En 1840, il présente à l'Académie des sciences un mémoire intitulé « Recherches expérimentales sur le mouvement des liquides, dans les tubes de très petits diamètres », qui va apporter plusieurs contributions significatives au domaine de la mécanique des fluides ainsi qu’à son application en physiologie

    Pairwise hydrodynamic interactions and diffusion in a vesicle suspension

    Full text link
    The hydrodynamic interaction of two deformable vesicles in shear flow induces a net displacement, in most cases an increase of their distance in the transverse direction. The statistical average of these interactions leads to shear-induced diffusion in the suspension, both at the level of individual particles which experience a random walk made of successive interactions, and at the level of suspension where a non-linear down-gradient diffusion takes place, an important ingredient in the structuring of suspension flows. We make an experimental and computational study of the interaction of a pair of lipid vesicles in shear flow by varying physical parameters, and investigate the decay of the net lateral displacement with the distance between the streamlines on which the vesicles are initially located. This decay and its dependency upon vesicle properties can be accounted for by a simple model based on the well established law for the lateral drift of a vesicle in the vicinity of a wall. In the semi-dilute regime, a determination of self-diffusion coefficients is presented

    Miniaturized magnetic stir bars for controlled agitation of aqueous microdroplets

    Get PDF

    Interaction hydrodynamique entre deux vésicules dans un cisaillement simple

    No full text
    Vesicles are closed bilayers of tensioactive molecules, filled with liquid, inside another liquid. Their size can be between 10 and 100 microns : in this case, they are called giant vesicles. We study the dynamic of two of these objects in a simple shear flow, which is the one of a liquid sheared between two walls translating with respect to each other at a constant speed and distance. We begin by an asymptotic study, for quasispherical vesicles in the far field interacting regime. We then use a numerical code based on the boundary element method to study the case of less spherical and closer vesicles, and compare our results with experiments. We finish by presenting how this study can be used to predict some diffusing properties of a sheared suspension of vesicles, in the semidilute regime, where only the details of two body interactions are considered.Les vésicules sont des bicouches fermées de molécules tensioactives, remplies de liquide, à l'intérieur d'un autre liquide. Leur taille peut être comprise entre dix et 100 microns : elles sont alors dites géantes. Nous nous intéressons à la dynamique de deux de ces objets dans un cisaillement simple, c'est à dire l'écoulement d'un liquide situé entre deux plaques planes se translatant l'une par rapport à l'autre à vitesse et distance constante. Nous commençons par une étude asymptotique, pour des vésicules quasi-sphériques en interaction lointaine. Nous utilisons ensuite un code de calcul basé sur la méthode des éléments de frontière pour étudier le cas de vésicules moins sphériques et plus proches, et comparons les résultats obtenus avec des expériences. Nous présentons enfin comment cette étude peut être utilisée pour prédire certaines propriétés de diffusion d'une suspension de vésicules, dans le régime semi-dilué, où seul le détail des interactions à deux corps est considéré

    Hydrodynamic interaction between two vesicles in a simple shear flow

    No full text
    Les vésicules sont des bicouches fermées de molécules tensioactives, remplies de liquide, à l'intérieur d'un autre liquide. Leur taille peut être comprise entre dix et 100 microns : elles sont alors dites géantes. Nous nous intéressons à la dynamique de deux de ces objets dans un cisaillement simple, c'est à dire l'écoulement d'un liquide situé entre deux plaques planes se translatant l'une par rapport à l'autre à vitesse et distance constante. Nous commençons par une étude asymptotique, pour des vésicules quasi-sphériques en interaction lointaine. Nous utilisons ensuite un code de calcul basé sur la méthode des éléments de frontière pour étudier le cas de vésicules moins sphériques et plus proches, et comparons les résultats obtenus avec des expériences. Nous présentons enfin comment cette étude peut être utilisée pour prédire certaines propriétés de diffusion d'une suspension de vésicules, dans le régime semi-dilué, où seul le détail des interactions à deux corps est considéré.Vesicles are closed bilayers of tensioactive molecules, filled with liquid, inside another liquid. Their size can be between 10 and 100 microns : in this case, they are called giant vesicles. We study the dynamic of two of these objects in a simple shear flow, which is the one of a liquid sheared between two walls translating with respect to each other at a constant speed and distance. We begin by an asymptotic study, for quasispherical vesicles in the far field interacting regime. We then use a numerical code based on the boundary element method to study the case of less spherical and closer vesicles, and compare our results with experiments. We finish by presenting how this study can be used to predict some diffusing properties of a sheared suspension of vesicles, in the semidilute regime, where only the details of two body interactions are considered

    A Lagrangian formulation for a gravitational analogue of the acoustic radiation force

    No full text
    International audienceIn this letter, we propose an expression for the instantaneous acoustic radiation force acting on a compressible sphere when it is immersed in a sound field with a wavelength much larger than the particle size (Rayleigh scattering regime). By following a Lagrangian approach, we show that the leading term of the radiation force can alternatively be expressed as a fluctuating gravitation-like force. In other words, the effect of the acoustic pressure gradient is to generate a local acceleration field encompassing the sphere, which gives rise to an apparent buoyancy force, making the object move in the incoming field. When averaging over time, we recover the celebrated Gor'kov expression and emphasize that two terms appear, one local and one convective, which identify with the well-known monopolar and dipolar contributions

    Characterization of the mechanical properties of cross-linked serum albumin microcapsules: effect of size and protein concentration

    No full text
    International audienceA microfluidic technique is used to characterize the mechanical behavior of capsules that are produced in a two-step process: first, an emulsification step to form droplets, followed by a cross-linking step to encapsulate the droplets within a thin membrane composed of cross-linked proteins. The objective is to study the influence of the capsule size and protein concentration on the membrane mechanical properties. The microcapsules are fabricated by cross-linking of human serum albumin (HSA) with concentrations from 15 to 35 % (w/v). A wide range of capsule radii (∼40–450 μm) is obtained by varying the stirring speed in the emulsification step. For each stirring speed, a low threshold value in protein concentration is found, below which no coherent capsules could be produced. The smaller the stirring speed, the lower the concentration can be. Increasing the concentration from the threshold value and considering capsules of a given size, we show that the surface shear modulus of the membrane increases with the concentration following a sigmoidal curve. The increase in mechanical resistance reveals a higher degree of cross-linking in the membrane. Varying the stirring speed, we find that the surface shear modulus strongly increases with the capsule radius: its increase is two orders of magnitude larger than the increase in size for the capsules under consideration. It demonstrates that the cross-linking reaction is a function of the emulsion size distribution and that capsules produced in batch through emulsification processes inherently have a distribution in mechanical resistance
    corecore