218 research outputs found

    The origin of the molecular emission around the southern hemisphere Re 4 IRS - HH 188 region

    Full text link
    We present SEST observations of the molecular environment ahead of the southern Herbig-Haro object 188 (HH188), associated with the low-mass protostar Re4 IRS. We have also used the SuperCosmos Halpha survey to search for Halpha emission associated with the Re4 IRS - HH188 region. The aim of the present work is to study the properties of the molecular gas and to better characterize this southern star forming region. We mapped the HCO+ 3-2 and H13CO+ 1-0 emission around the YSO and took spectra of the CH3OH 2(0)-1(0)A+ and 2(-1)-1(-1)E and SO 6(5)-5(4) towards the central source. Column densities are derived and different scenarios are considered to explain the origin of the molecular emission. HCO+ arises from a relatively compact region around the YSO; however, its peak emission is displaced to the south following the outflow direction. Our chemical analysis indicates that a plausible scenario is that most of the emission arises from the cold, illuminated dense gas ahead of the HH188 object. We have also found that HH188, a high excitation object, seems to be part of a parsec scale and highly collimated HH system. Re4 IRS is probably a binary protostellar system, in the late Class 0 or Class I phase. One of the protostars, invisible in the near-IR, seems to power the HH188 system.Comment: 9 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Chemistry of dense clumps near moving Herbig-Haro objects

    Full text link
    Localised regions of enhanced emission from HCO+, NH3 and other species near Herbig-Haro objects (HHOs) have been interpreted as arising in a photochemistry stimulated by the HHO radiation on high density quiescent clumps in molecular clouds. Static models of this process have been successful in accounting for the variety of molecular species arising ahead of the jet; however recent observations show that the enhanced molecular emission is widespread along the jet as well as ahead. Hence, a realistic model must take into account the movement of the radiation field past the clump. It was previously unclear as to whether the short interaction time between the clump and the HHO in a moving source model would allow molecules such as HCO+ to reach high enough levels, and to survive for long enough to be observed. In this work we model a moving radiation source that approaches and passes a clump. The chemical picture is qualitatively unchanged by the addition of the moving source, strengthening the idea that enhancements are due to evaporation of molecules from dust grains. In addition, in the case of several molecules, the enhanced emission regions are longer-lived. Some photochemically-induced species, including methanol, are expected to maintain high abundances for ~10,000 years.Comment: 7 pages, 3 figure

    Multitransitional observations of the CS core of L673

    Full text link
    A multitransitional study with the BIMA interferometric array was carried out toward the starless core found in the L673 region, in order to study the small-size structure of the cores detected with previous single--dish observations, which provides us with a test of the predictions of the chemical model of Taylor et al. (1996; 1998). We detected emission in the CS (2-1), N2H+ (1-0), and HCO+ (1-0) lines. Several clumps of size ~0.08 pc were found for each line distributed all over the region where previous single-dish emission was found (Morata et al. 1997). Each molecular transition traces differently the clump distribution, although in some cases the detected clumps are coincident. The distribution of the N2H+ emission and the single-dish NH3 emission are coincident and compatible with an origin in the same gas. The large fraction of missing flux measured for the CS (2-1) transition can be explained if the cloud is formed by a clumpy and heterogeneous medium. Four positions were selected to derive the abundance ratios [N2H+/CS] and [HCO+/CS] from the molecular column density determinations, and to compare them with the values predicted by the chemical model. The model was able to explain the interferometric observations, and, in particular, the chemical differentiation of the detected clumps and the coincidence of the NH3 and N2H+ emissions. The lack of HCO+ towards the two selected positions that trace the more evolved clumps cannot be accounted for by the model, but it is possibly due to strong self-absorption. We propose a classification of the studied clumps according to the stage of chemical evolution indicated by the molecular abundances.Comment: 10 pages, 9 figures, accepted for publication in A&

    Modeling the magnetic field in the protostellar source NGC 1333 IRAS 4A

    Full text link
    Magnetic fields are believed to play a crucial role in the process of star formation. We compare high-angular resolution observations of the submillimeter polarized emission of NGC 1333 IRAS 4A, tracing the magnetic field around a low-mass protostar, with models of the collapse of magnetized molecular cloud cores. Assuming a uniform dust alignment efficiency, we computed the Stokes parameters and synthetic polarization maps from the model density and magnetic field distribution by integrations along the line-of-sight and convolution with the interferometric response. The synthetic maps are in good agreement with the data. The best-fitting models were obtained for a protostellar mass of 0.8 solar masses, of age 9e4 yr, formed in a cloud with an initial mass-to-flux ratio ~2 times the critical value. The magnetic field morphology in NGC 1333 IRAS 4A is consistent with the standard theoretical scenario for the formation of solar-type stars, where well-ordered, large-scale, rather than turbulent, magnetic fields control the evolution and collapse of the molecular cloud cores from which stars form.Comment: 4 pages, 5 figures. Accepted by Astronomy and Astrophysic

    The L723 low mass star forming protostellar system: resolving a double core

    Full text link
    We present 1.35 mm SMA observations around the low-mass Class 0 source IRAS 19156+1906, at the the center of the L723 dark cloud. We detected emission from dust as well as emission from H2CO, DCN and CN, which arise from two cores, SMA 1 and SMA 2, separated by 2.9" (880 AU). SMA 2 is associated with VLA 2. SiO 5-4 emission is detected, possibly tracing a region of interaction between the dense envelope and the outflow. We modeled the dust and the H2CO emission from the two cores: they have similar physical properties but SMA 2 has a larger p-H2CO abundance than SMA 1. The p-H2CO abundances found are compatible with the value of the outer part of the circumstellar envelopes associated with Class 0 sources. SMA 2 is likely more evolved than SMA 1. The kinematics of the two sources show marginal evidence of infall and rotation motions. The mass detected by the SMA observation, which trace scales of ~1000 AU, is only a small fraction of the mass contained in the large scale molecular envelope, which suggests that L723 is still in a very early phase of star formation. Despite the apparent quiescent nature of the L723, fragmentation is occurring at the center of the cloud at different scales. Thus, at 1000 AU the cloud has fragmented in two cores, SMA 1 and SMA 2. At the same time, at least one of these cores, SMA 2, has undergone additional fragmentation at scales of 150 AU, forming a multiple stellar system.Comment: 35 pages, 15 figures. Accepted to the Astrophysical Journa

    Evidence for transient clumps and gas chemical evolution in the CS core of L673

    Full text link
    We present FCRAO maps as well as combined BIMA and FCRAO maps of the high density molecular emission towards the CS core in the L673 region. With the FCRAO telescope, we mapped the emission in the CS(2-1), C34S(2-1), HCO+(1-0), and H13CO+(1-0) lines. The high density molecular emission, which arises from a filamentary structure oriented in the NW-SE direction, shows clear morphological differences for each molecule. We find that HCO+ has an extremely high optical depth, and that the H13CO+ emission is well correlated with submm sources. The BIMA and FCRAO combined maps recover emission from a lot of other structure which was previously undetected or only marginally detected, and show an overall aspect of a filamentary structure connecting several intense clumps. We found a total 15 clumps in our combined data cube, all of them resolved by our angular resolution, with diameters in the 0.03-0.09 pc range. We find a clear segregation between the northern and southern region of the map: the northern section shows the less chemically evolved gas and less massive but more numerous clumps, while the southern region is dominated by the largest and most massive clump, and contains the more evolved gas, as traced by emission of late-time molecules. We find that the derived clump masses are below the virial mass, and that the clumps masses become closer to the virial mass when they get bigger and more massive. This supports the idea that these clumps must be transient, and only the more massive ones have a chance to last long enough to form stars. The clumps we detect are probably in an earlier evolutionary stage than the ``starless cores'' reported recently in the literature. Only the most massive one has properties similar to a ``starless core''.Comment: 12 pages, 8 figures, accepted for publication in Astronomy & Astrophysics; minor revisions after language editin

    The clumpiness of molecular clouds: HCO+ (3--2) survey near Herbig-Haro objects

    Get PDF
    Some well-studied Herbig Haro objects have associated with them one or more cold, dense, and quiescent clumps of gas. We propose that such clumps near an HH object can be used as a general measure of clumpiness in the molecular cloud that contains that HH object. Our aim is to make a survey of clumps around a sample of HH objects, and to use the results to make an estimate of the clumpiness in molecular clouds. All known cold, dense, and quiescent clumps near HH objects are anomalously strong HCO+ emitters. Our method is, therefore, to search for strong HCO+ emission as an indicator of a clump near to an HH object. The searches were made using JCMT and SEST in the HCO+ 3-2 and also H13CO+ 1-0 lines, with some additional searches for methanol and sulphur monoxide lines. The sources selected were a sample of 22 HH objects in which no previous HCO+ emission had been detected. We find that half of the HH objects have clumps detected in the HCO+ 3-2 line and that all searches in H13CO$+ 1-0 lines show evidence of clumpiness. All condensations have narrow linewidths and are evidently unaffected dynamically by the HH jet shock. We conclude that the molecular clouds in which these HH objects are found must be highly heterogeneous on scales of less than 0.1 pc. An approximate calculation based on these results suggests that the area filling factor of clumps affected by HH objects is on the order of 10%. These clumps have gas number densities larger than 3e4 cm-2.Comment: 11 pages, 14 figures. Accepted for publication in Astronomy and Astrophysic

    An observational survey of molecular emission ahead of Herbig-Haro objects

    Full text link
    Context. A molecular survey recently performed ahead of HH~2 supports the idea that the observed molecular enhancement is due to UV radiation from the HH object. Aims. The aim of the present work is to determine whether all HH objects with enhanced HCO+^+ emission ahead of them also exhibit the same enhanced chemistry as HH~2. We thus observed several molecular lines at several positions ahead of five Herbig-Haro objects where enhanced HCO+^+ emission was previously observed. Methods. We mapped the five Herbig-Haro objects using the IRAM-30 m. For each position we searched for more than one molecular species, and where possible for more than one transition per species. We then estimated the averaged beam column densities for all species observed and also performed LVG analyses to constrain the physical properties of the gas. Results. The chemically richest quiescent gas is found ahead of the HH~7-11 complex, in particular at the HH~7-11 A position. In some regions we also detected a high velocity gas component. We find that the gas densities are always higher than those typical of a molecular cloud while the derived temperatures are always quite low, ranging from 10 to 25 K. The emission of most species seems to be enhanced with respect to that of a typical dense clump, probably due to the exposure to a high UV radiation from the HH objects. Chemical differentiation among the positions is also observed. We attempt a very simple chemical analysis to explain such differentiation.Comment: Accepted by Astronomy and Astrophysics; 17 pages, 8 figure
    • …
    corecore