110 research outputs found

    When Operation Technology Meets Information Technology: Challenges and Opportunities

    Get PDF
    Industry 4.0 has revolutionized process innovation while facilitating and encouraging many new possibilities. The objective of Industry 4.0 is the radical enhancement of productivity, a goal that presupposes the integration of Operational Technology (OT) networks with Information Technology (IT) networks, which were hitherto isolated. This disruptive approach is enabled by adopting several emerging technologies in Enterprise processes. In this manuscript, we discuss what we believe to be one of the main challenges preventing the full employment of Industry 4.0, namely, the integration of Operation Technology networking and Information Technology networking. We discuss the technical challenges alongside the potential tools while providing a state-of-the-art use case scenario. We showcase a possible solution based on the Asset Administration Shell approach, referring to the use case of camera synchronization for collaborative tasks

    In-lab characterization of HYPSOS, a novel stereo hyperspectral observing system: first results

    Get PDF
    HYPSOS (HYPerspectral Stereo Observing System, patented) is a novel remote sensing instrument able to extract the spectral information from the two channels of a pushbroom stereo camera; thus it simultaneously provides 4D information, spatial and spectral, of the observed features. HYPSOS has been designed to be a compact instrument, compatible with small satellite applications, to be suitable both for planetary exploration as well for terrestrial environmental monitoring. An instrument with such global capabilities, both in terms of scientific return and needed resources, is optimal for fully characterizing the observed surface of investigation. HYPSOS optical design couples a pair of folding mirrors to a modified three mirror anastigmat telescope for collecting the light beams from the optical paths of the two stereo channels; then, on the telescope focal plane, there is the entrance slit of an imaging spectrograph, which selects and disperses the light from the two stereo channels on a bidimensional detector. With this optical design, the two stereo channels share the large majority of the optical elements: this allowed to realize a very compact instrument, which needs much less resources than an equivalent system composed by a stereo camera and a spectrometer. To check HYPSOS actual performance, we realized an instrument prototype to be operated in a laboratory environment. The laboratory setup is representative of a possible flight configuration: the light diffused by a surface target is collimated on the HYPSOS channel entrance apertures, and the target is moved with respect to the instrument to reproduce the in- flight pushbroom acquisition mode. Here we describe HYPSOS and the ground support equipment used to characterize the instrument, and show the preliminary results of the instrument alignment activities

    Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond.

    Get PDF
    Cells have a number of mechanisms to maintain protein homeostasis, including proteasome-mediated degradation of ubiquitinated proteins and autophagy, a regulated process of ‘self-eating’ where the contents of entire organelles can be recycled for other uses. The unfolded protein response prevents protein overload in the secretory pathway. In the past decade, it has become clear that these fundamental cellular processes also help contain inflammation though degrading pro-inflammatory protein complexes such as the NLRP3 inflammasome. Signaling pathways such as the UPR can also be co-opted by toll-like receptor and mitochondrial reactive oxygen species signaling to induce inflammatory responses. Mutations that alter key inflammatory proteins, such as NLRP3 or TNFR1, can overcome normal protein homeostasis mechanisms, resulting in autoinflammatory diseases. Conversely, Mendelian defects in the proteasome cause protein accumulation, which can trigger interferon-dependent autoinflammatory disease. In non-Mendelian inflammatory diseases, polymorphisms in genes affecting the UPR or autophagy pathways can contribute to disease, and in diseases not formerly considered inflammatory such as neurodegenerative conditions and type 2 diabetes, there is increasing evidence that cell intrinsic or environmental alterations in protein homeostasis may contribute to pathogenesis

    Petrosia ficiformis (Poiret, 1789): an excellent model for holobiont and biotechnological studies

    No full text
    The aggregation of prokaryotic and eukaryotic cells has resulted in evolution of organisms with remarkable abilities to synthetize natural bioactive compounds of biotechnological relevance. Marine sponges such as Petrosia ficiformis are examples of this evolutionary strategy. The P. ficiformis microbiome, which produces a diversity of chemical compounds, plays a fundamental role in this sponge\u2019s extraordinary adaptation to various ecological conditions. The microbial community of P. ficiformis seems representative of sponge microbiomes, but it has an unusual exclusively horizontal transmission. This uncommon feature, together with its wide environmental distribution, its ability to generate 3D cell cultures that host symbionts, and the availability of meta-omics and physiology information make this sponge an effective model to study the complexity of holobionts

    On the Path to Thermo-Stable Collagen: Culturing the Versatile Sponge Chondrosia reniformis

    No full text
    none3siThe collagen proteins family is sought-after in the pharmaceuticals, cosmetics, and food industries for various biotechnological applications. The most abundant sources of collagen are pigs and cows, but due to religious restrictions and possible disease transmission, they became less attractive. An alternative source can be found in marine invertebrates, specifically in sponges. Alas, two problems arise: (1). Growing sponges is complicated. (2). Sponge collagen has low heat tolerance, which can impose a problem for human biotechnological usage. To fill these gaps, we studied the collagen-abundant sponge Chondrosia reniformis. Two culture experiments were conducted: (1). A sea-based system examined the difference in growth rates of C. reniformis from different habitats, growing under natural seasonal conditions; (2). A land-based controlled system, which assessed the growth-rate of C. reniformis at different temperatures. The results reveal that C. reniformis from shallow habitats are growing larger and faster than individuals from colder, deeper habitats, and that the optimal temperature for C. reniformis growth is 25 C. The results demonstrate that C. reniformis is highly fit for culture and can produce thermally stable collagen. Further research is needed to determine the best conditions for C. reniformis culture for collagen extract and other exciting materials for bioprospecting.openBoaz Orel; Marco Giovine; Micha IlanOrel, Boaz; Giovine, Marco; Ilan, Mich
    corecore