4 research outputs found

    Healthful and Unhealthful Plant-Based Diets and Chronic Obstructive Pulmonary Disease in U.S. Adults: Prospective Study

    No full text
    International audienceBackground: Despite the potential protective effect of a plant-based diet against chronic obstructive pulmonary disease (COPD), it remains unknown whether intake of different types of plant foods is beneficial for COPD. Our aims were to determine whether adherence to the healthful version of a plant-based diet (healthful Plant-based Diet Index (hPDI)) is associated with a lower COPD risk, whereas adherence to the unhealthful version (unhealthful Plant-based Diet Index (uPDI)) is associated with a higher COPD risk. Methods: 46,948 men from the Health Professionals Follow-up Study, 73,592 women from the Nurses’ Health Study, and 85,515 women from the Nurses’ Health Study II who completed biennial questionnaires from 1984–2018. We derived diet scores from repeated validated food frequency questionnaires. Among 5,661,994 person-years of follow-up, we documented 2605 validated COPD cases between 1984–2018. Results: After tight control for smoking and other potential confounders, COPD risk was 46% lower among participants with the highest hPDI score compared to those with the lowest score. Conversely, COPD risk was 39% higher among participants with the highest uPDI. Further adjustment for processed meat intake led to similar results. Conclusions: These findings provide further evidence for consuming a diet that emphasizes healthful plant foods to optimize lung health

    Association of circulating Vitamin D with colorectal cancer depends on Vitamin D-binding protein isoforms: A pooled, nested, case-control study

    Get PDF
    International audienceBackground: Higher circulating 25-hydroxyvitamin-D [25(OH)D] concentrations are consistently inversely associated with colorectal cancer (CRC) risk in observational studies. However, it is unknown whether this association depends on the functional GC-rs4588∗A (Thr436Lys) variant encoding the Vitamin D-binding protein-2 (DBP2) isoform, which may affect Vitamin D status and bioavailability. Methods: We analyzed data from 1710 incident CRC cases and 1649 incidence-density-matched controls nested within three prospective cohorts of mostly Caucasians. Study-specific incidence rate ratios (RRs) for associations of prediagnostic, season-standardized 25(OH)D concentrations according to DBP2 isoform with CRC were estimated using multivariable unconditional logistic regression and were pooled using fixed-effects models. All statistical significance tests were two-sided. Results: The odds of having 25(OH)D concentrations less than 50nmol/L (considered insufficient by the Institute of Medicine) were 43% higher for each DBP2-encoding variant (rs4588∗A) inherited (per DBP2 odds ratio [OR] = 1.43, 95% confidence interval [CI] = 1.27 to 1.62, Ptrend = 1.2 x 10T8). The association of 25(OH)D concentrations with CRC risk differed by DBP2: 25(OH)D concentrations considered sufficient (>50nmol/L), relative to deficient (<30nmol/L), were associated with a 53% lower CRC risk among individuals with the DBP2 isoform (RR = 0.47, 95% CI = 0.33 to 0.67), but with a non-statistically significant 12% lower risk among individuals without it (RR = 0.88, 95% CI = 0.61 to 1.27) (Pheterogeneity.01). Conclusions: Our results suggest that the 25(OH)D-CRC association may differ by DBP isoform, and those with a DBP2-encoding genotype linked to Vitamin D insufficiency may particularly benefit from adequate 25(OH)D for CRC prevention

    Genome-wide Association Study of Bladder Cancer Reveals New Biological and Translational Insights

    No full text
    International audienceBackground: Genomic regions identified by genome-wide association studies (GWAS) for bladder cancer risk provide new insights into etiology. Objective: To identify new susceptibility variants for bladder cancer in a meta-analysis of new and existing genome-wide genotype data. Design, setting, and participants: Data from 32 studies that includes 13,790 bladder cancer cases and 343, 502 controls of European ancestry were used for meta-analysis. Outcome measurements and statistical analyses: Log-additive associations of genetic variants were assessed using logistic regression models. A fixed-effects model was used for meta-analysis of the results. Stratified analyses were conducted to evaluate effect modification by sex and smoking status. A polygenic risk score (PRS) was generated on the basis of known and novel susceptibility variants and tested for interaction with smoking. Results and limitations: Multiple novel bladder cancer susceptibility loci (6p.22.3, 7q36.3, 8q21.13, 9p21.3, 10q22.1, 19q13.33) as well as improved signals in three known regions (4p16.3, 5p15.33, 11p15.5) were identified, bringing the number of independent markers at genome-wide significance (p < 5 × 10−8) to 24. The 4p16.3 (FGFR3/TACC3) locus was associated with a stronger risk for women than for men (p-interaction = 0.002). Bladder cancer risk was increased by interactions between smoking status and genetic variants at 8p22 (NAT2; multiplicative p value for interaction [pM-I] = 0.004), 8q21.13 (PAG1; pM-I = 0.01), and 9p21.3 (LOC107987026/MTAP/CDKN2A; pM-I = 0.02). The PRS based on the 24 independent GWAS markers (odds ratio per standard deviation increase 1.49, 95% confidence interval 1.44–1.53), which also showed comparable results in two prospective cohorts (UK Biobank, PLCO trial), revealed an approximately fourfold difference in the lifetime risk of bladder cancer according to the PRS (e.g., 1st vs 10th decile) for both smokers and nonsmokers. Conclusions: We report novel loci associated with risk of bladder cancer that provide clues to its biological underpinnings. Using 24 independent markers, we constructed a PRS to stratify lifetime risk. The PRS combined with smoking history, and other established risk factors, has the potential to inform future screening efforts for bladder cancer. Patient summary: We identified new genetic markers that provide biological insights into the genetic causes of bladder cancer. These genetic risk factors combined with lifestyle risk factors, such as smoking, may inform future preventive and screening strategies for bladder cancer

    A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer

    No full text
    International audienceBACKGROUND: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown. METHODS: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples). RESULTS: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction. CONCLUSIONS: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation. Published by Oxford University Press 2020. This work is written by US Government employees and is in the public domain in the
    corecore