49 research outputs found

    Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell

    Get PDF
    One of the major properties of the semi-synthetic minimal cell, as a model for early living cells, is the ability to self-reproduce itself, and the reproduction of the boundary layer or vesicle compartment is part of this process. A minimal bio-molecular mechanism based on the activity of one single enzyme, the FAS-B (Fatty Acid Synthase) Type I enzyme from Brevibacterium ammoniagenes, is encapsulated in 1-palmitoyl-2oleoyl-sn-glycero-3-phosphatidylcholine (POPC) liposomes to control lipid synthesis. Consequently molecules of palmitic acid released from the FAS catalysis, within the internal lumen, move toward the membrane compartment and become incorporated into the phospholipid bilayer. As a result the vesicle membranes change in lipid composition and liposome growth can be monitored. Here we report the first experiments showing vesicles growth by catalysis of one enzyme only that produces cell boundary from within. This is the prototype of the simplest autopoietic minimal cell

    Glomerular autoimmune multicomponents of human lupus nephritis in vivo: α-enolase and annexin AI

    Get PDF
    Renal targets of autoimmunity in human lupus nephritis (LN) are unknown. We sought to identify autoantibodies and glomerular target antigens in renal biopsy samples from patients with LN and determine whether the same autoantibodies can be detected in circulation. Glomeruli were microdissected from biopsy samples of 20 patients with LN and characterized by proteomic techniques. Serum samples from large cohorts of patients with systemic lupus erythematosus (SLE) with and without LN and other glomerulonephritides were tested. Glomerular IgGs recognized 11 podocyte antigens, with reactivity varying by LN pathology. Notably, IgG2 autoantibodies against α-enolase and annexin AI were detected in 11 and 10 of the biopsy samples, respectively, and predominated over other autoantibodies. Immunohistochemistry revealed colocalization of α-enolase or annexin AI with IgG2 in glomeruli. High levels of serum anti-α-enolase (>15 mg/L) IgG2 and/or anti-annexin AI (>2.7 mg/L) IgG2 were detected in most patients with LN but not patients with other glomerulonephritides, and they identified two cohorts: patients with high anti-α-enolase/low anti-annexin AI IgG2 and patients with low anti-α-enolase/high anti-annexin AI IgG2. Serum levels of both autoantibodies decreased significantly after 12 months of therapy for LN. Anti-α-enolase IgG2 recognized specific epitopes of α-enolase and did not cross-react with dsDNA. Furthermore, nephritogenic monoclonal IgG2 (clone H147) derived from lupus-prone MRL-lpr/lpr mice recognized human α-enolase, suggesting homology between animal models and human LN. These data show a multiantibody composition in LN, where IgG2 autoantibodies against α-enolase and annexin AI predominate in the glomerulus and can be detected in serum

    Genetic determinants in a critical domain of ns5a correlate with hepatocellular carcinoma in cirrhotic patients infected with hcv genotype 1b

    Get PDF
    HCV is an important cause of hepatocellular carcinoma (HCC). HCV NS5A domain‐1 interacts with cellular proteins inducing pro‐oncogenic pathways. Thus, we explore genetic variations in NS5A domain‐1 and their association with HCC, by analyzing 188 NS5A sequences from HCV genotype‐1b infected DAA‐naĂŻve cirrhotic patients: 34 with HCC and 154 without HCC. Specific NS5A mutations significantly correlate with HCC: S3T (8.8% vs. 1.3%, p = 0.01), T122M (8.8% vs. 0.0%, p < 0.001), M133I (20.6% vs. 3.9%, p < 0.001), and Q181E (11.8% vs. 0.6%, p < 0.001). By multivariable analysis, the presence of >1 of them independently correlates with HCC (OR (95%CI): 21.8 (5.7–82.3); p < 0.001). Focusing on HCC‐group, the presence of these mutations correlates with higher viremia (median (IQR): 5.7 (5.4–6.2) log IU/mL vs. 5.3 (4.4–5.6) log IU/mL, p = 0.02) and lower ALT (35 (30–71) vs. 83 (48–108) U/L, p = 0.004), suggesting a role in enhancing viral fitness without affecting necroinflammation. Notably, these mutations reside in NS5A regions known to interact with cellular proteins crucial for cell‐cycle regulation (p53, p85‐PIK3, and ÎČ‐ catenin), and introduce additional phosphorylation sites, a phenomenon known to ameliorate NS5A interaction with cellular proteins. Overall, these results provide a focus for further investigations on molecular bases of HCV‐mediated oncogenesis. The role of these NS5A domain‐1 mutations in triggering pro‐oncogenic stimuli that can persist also despite achievement of sustained virological response deserves further investigation

    A novel High-Voltage System for a triple GEM detector

    No full text
    A novel High-Voltage System for a triple GEM detector has been designed and realized in Frascati within the LHCb muon detector framework. The system is built with seven floating power supply, with a maximum of 1200 V each, and controlled via CANbus, for voltage settings and monitoring. Several HV modules can be installed in a nano-ammeter mainframe already developed in Frascati, realizing a HV crate able to supply up to 24 triple GEM chambers with a 1 nA resolution monitoring system

    Autoimmune disorders associated with myelodysplastic syndromes: clinical, prognostic and therapeutic implications

    No full text
    Around one third of patients with myelodysplastic syndromes (MDS) suffer from concomitant autoimmune disorders (AD). However the actual burden of such an association appears to be quite heterogeneous in different studies probably due to variable criteria in selecting both MDS patients and subtypes of AD. Moreover, both the prognostic implications and the potential applications of specific therapeutic approaches in this patient subgroup are still at least partially under debate. The present review will try to shed some further light on the clinical association between MDS and AD in order to better delineate its prognostic significance and to suggest potential therapeutic algorithms available for these patients

    Applications in beam diagnostics with triple GEM detectors

    No full text
    The development of different detectors based on GEM technology, mainly to be used for beam diagnostic, is described. The use of GEM foils for detector construction started in Frascati on 2002 with the R&D for LHCb Muon Chambers placed at small angle. Ever since several triple GEM chambers have been built for different applications. The results obtained in several beam tests have shown high performances: high rate capability (50 MHz/cm^2), good time resolution (4 ns), good space resolution O(200 um) source, and good aging resistance after 2C/cm^2 source of integrated charge. Recent developments on readout electronics and power supply for portable detectors are presented
    corecore