354 research outputs found

    The quest for a new vaccine against tuberculosis

    Full text link

    People inflows as a pandemic trigger: Evidence from a quasi-experimental study

    Get PDF
    Although it has been established that population density can contribute to the outbreak of the COVID-19 virus, there is no evidence to suggest that economic activities, which imply a significant change in mobility, played a causal role in the unfolding of the pandemic. In this paper, we exploit the particular situation of Sardinia (Italy) in 2020 to examine how changes in mobility due to tourism inflows (a proxy of economic activities) influenced the development of the COVID-19 pandemic. Using a difference-in-differences approach, we identify a strong causal relationship between tourism flows and the emergence of COVID-19 cases in Sardinia. We estimate the elasticity of COVID-19 cases in relation to the share of tourists to be 4.1%, which increases to 5.1% when excluding local residents. Our analysis suggests that, in the absence of tools preventing the spread of infection, changes in population density due to economic activities trigger the pandemic spreading in previously unaffected locations. This work contributes to the debate on the complex relationship between COVID-19 and the characteristics of locations by providing helpful evidence for risk-prevention policies

    PE_PGRS proteins of Mycobacterium tuberculosis: A specialized molecular task force at the forefront of host–pathogen interaction

    Get PDF
    To the PE_PGRS protein subfamily belongs a group of surface-exposed mycobacterial antigens that in Mycobacterium tuberculosis (Mtb) H37Rv accounts to more than 65 genes, 51 of which are thought to express a functional protein. PE_PGRS proteins share a conserved structural architecture with three main domains: the N-terminal PE domain; the PGRS domain, that can vary in sequence and size and is characterized by the presence of multiple GGA-GGX amino acid repeats; the highly conserved sequence containing the GRPLI motif that links the PE and PGRS domains; the unique C-terminus end that can vary in size from few to up to ≈ 300 amino acids. pe_pgrs genes emerged in slow-growing mycobacteria and expanded and diversified in MTBC and few other pathogenic mycobacteria. Interestingly, despite sequence homology and apparent redundancy, PE_PGRS proteins seem to have evolved a peculiar function. In this review, we summarize the actual knowledge on this elusive protein family in terms of evolution, structure, and function, focusing on the role of PE_PGRS in TB pathogenesis. We provide an original hypothesis on the role of the PE domain and propose a structural model for the polymorphic PGRS domain that might explain how so similar proteins can have different physiological functions

    Optimization of the energy for Breast monochromatic absorption X-ray Computed Tomography

    Get PDF
    The limits of mammography have led to an increasing interest on possible alternatives such as the breast Computed Tomography (bCT). The common goal of all X-ray imaging techniques is to achieve the optimal contrast resolution, measured through the Contrast to Noise Ratio (CNR), while minimizing the radiological risks, quantified by the dose. Both dose and CNR depend on the energy and the intensity of the X-rays employed for the specific imaging technique. Some attempts to determine an optimal energy for bCT have suggested the range 22keV\u201334keV, some others instead suggested the range 50keV\u201360keV depending on the parameters considered in the study. Recent experimental works, based on the use of monochromatic radiation and breast specimens, show that energies around 32keV give better image quality respect to setups based on higher energies. In this paper we report a systematic study aiming at defining the range of energies that maximizes the CNR at fixed dose in bCT. The study evaluates several compositions and diameters of the breast and includes various reconstruction algorithms as well as different dose levels. The results show that a good compromise between CNR and dose is obtained using energies around 28keV

    Improved protection in guinea pigs after vaccination with a recombinant BCG expressing MPT64 on its surface

    Get PDF
    Abstract The lack of an efficient vaccine against tuberculosis is still one of the major problems threatening global human health. In previous work we showed that expression of the protective antigen MPT64 on the surface of Mycobacterium bovis BCG, the only approved vaccine against tuberculosis, strongly improved its immunogenicity and protective potential in mice. In this work we demonstrate that the same recombinant strain is able to induce better protection than wild type BCG also in guinea pigs preventing Mycobacterium tuberculosis dissemination and lung pathology, making this strain a strong candidate for further testing

    exploiting the mycobacterial cell wall to design improved vaccines against tuberculosis

    Get PDF
    The only vaccine available against tuberculosis (TB), the Bacille Calmette-Guerin (BCG), does not provide effective protection against the most common forms of adult TB and in recent years efforts have been made to develop a new and improved vaccine. Among the strategies implemented, the generation of a new live attenuated mycobacterial strain is seen as one of the most promising and feasible, for scientific, ethical and practical reasons. The new understanding of the biology of the tubercle bacilli and of host-pathogen interaction processes, coupled with the possibility to engineer BCG or M. tuberculosis, opened new avenues to design "intelligent" vaccines, capable of eliciting the immune response associated with protection while avoiding the induction of the host immune response associated with immunopathology. The complex and highly immunogenic mycobacterial cell wall can shape the general and antigen specific immune response elicited following immunization, and the possibility to exploit this knowledge may lead to the development of new vaccines that could help conquer this ancient human disease

    Functionalized multiwalled carbon nanotubes as ultrasound contrast agents

    Get PDF
    Ultrasonography is a fundamental diagnostic imaging tool in everyday clinical practice. Here, we are unique in describing the use of functionalized multiwalled carbon nanotubes (MWCNTs) as hyperechogenic material, suggesting their potential application as ultrasound contrast agents. Initially, we carried out a thorough investigation to assess the echogenic property of the nanotubes in vitro. We demonstrated their long-lasting ultrasound contrast properties. We also showed that ultrasound signal of functionalized MWCNTs is higher than graphene oxide, pristine MWCNTs, and functionalized single-walled CNTs. Qualitatively, the ultrasound signal of CNTs was equal to that of sulfur hexafluoride (SonoVue), a commercially available contrast agent. Then, we found that MWCNTs were highly echogenic in liver and heart through ex vivo experiments using pig as an animal model. In contrast to the majority of ultrasound contrast agents, we observed in a phantom bladder that the tubes can be visualized within a wide variety of frequencies (i.e., 5.5–10 MHz) and 12.5 MHz using tissue harmonic imaging modality. Finally, we demonstrated in vivo in the pig bladder that MWCNTs can be observed at low frequencies, which are appropriate for abdominal organs. Importantly, we did not report any toxicity of CNTs after 7 d from the injection by animal autopsy, organ histology and immunostaining, blood count, and chemical profile. Our results reveal the enormous potential of CNTs as ultrasound contrast agents, giving support for their future applications as theranostic nanoparticles, combining diagnostic and therapeutic modalities
    • …
    corecore