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A B S T R A C T

Although it has been established that population density can contribute to the outbreak of the COVID-19 virus,
there is no evidence to suggest that economic activities, which imply a significant change in mobility, played
a causal role in the unfolding of the pandemic. In this paper, we exploit the particular situation of Sardinia
(Italy) in 2020 to examine how changes in mobility due to tourism inflows (a proxy of economic activities)
influenced the development of the COVID-19 pandemic. Using a difference-in-differences approach, we identify
a strong causal relationship between tourism flows and the emergence of COVID-19 cases in Sardinia. We
estimate the elasticity of COVID-19 cases in relation to the share of tourists to be 4.1%, which increases
to 5.1% when excluding local residents. Our analysis suggests that, in the absence of tools preventing the
spread of infection, changes in population density due to economic activities trigger the pandemic spreading
in previously unaffected locations. This work contributes to the debate on the complex relationship between
COVID-19 and the characteristics of locations by providing helpful evidence for risk-prevention policies.
1. Introduction

Recent research has established a causal relationship between pop-
ulation density and the outbreak of the COVID-19 virus (Carozzi et al.,
2022),4 and an extensive body of evidence strongly indicates that
mobility significantly correlates with higher infection rates and in-
creased mortality (Kraemer et al., 2020; Zhou et al., 2020; Spelta
and Pagnottoni, 2021; Glaeser et al., 2022). However, it is difficult
to quantify the exact impact of changes in mobility on the spread
of COVID-19, because the pandemic has been caused by a complex
interaction of various factors. Glaeser et al. (2022) highlight that
while all infectious diseases can potentially transmit through human
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that the unfolding of the epidemic slowed down in more dense locations because they are populated by individuals more likely to follow social norms that prevent
the unfolding of the epidemic. However, there is a consensus that denser locations are more likely to experience an epidemic outbreak, see Díaz Ramírez et al.
(2022).

5 Sardinia is an Italian region and the second-biggest Mediterranean island.

interaction, the specific relationship between mobility and contagion is
shaped by the disease’s inherent traits and the behaviors of travelers.
Consequently, delving into the factors that motivate people’s mobility
becomes a critical endeavor. This paper takes advantage of tourism-
related inflows to uncover the relationship between mobility and the
pandemic’s outbreak, while also examining the influence of tourism
on the dissemination of COVID-19. Higher accessibility amplifies the
likelihood of importing infections. Specifically, regions with prominent
transportation hubs, where a substantial number of travelers converge,
become more vulnerable to potential epidemic outbreaks (Han et al.,
2021). Hence, understanding whether there is a causal relationship
between tourism and COVID-19 is crucial for developing policies that
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can effectively mitigate risk and strike a balance between public health
and economic concerns.

The particular situation of Sardinia (Italy),5 during the year 2020,
helps to establish the existence and magnitude of a causal effect be-
tween an increase in the movement of people because of economic
activity (tourism inflows) and the spread of COVID-19. Traveling to
and between Italy was strictly restricted for much of 2020 to fight
the spreading of the COVID-19 virus, and such policies prevented
a widespread diffusion (Amuedo-Dorantes et al., 2021). The Italian
government chose to lift mobility restrictions at the beginning of the
summer, thereby allowing tourists to move once again. In fact, the strin-
gent Italian policies concerning the mobility of individuals prevented
the diffusion of the virus on the island, with Sardinia enjoying a virtual
absence of COVID-19 infections before lifting mobility restrictions.

Sardinia is a popular tourism spot during the summer months,
particularly in July and August, when tourism activity is at its high-
est (CRENOS, 2021).6 Before the restrictions were lifted, Sardinia was
one of the Italian regions least affected by the epidemic. However, the
region experienced a sharp increase in the number of cases in August,
when tourists were visiting in large numbers the island, which has also
been noted by the mainstream press (see, e.g. The Guardian, Giuffrida,
2020).7 The Italian case was at the forefront of the press debate
because, from being almost virus-free at the beginning of the summer,
cases soared from nearly 0 to hundreds every day in a matter of weeks.8
According to these media reports, there appears to be a correlation
between the tourist inflows and the spread of COVID-19. Nevertheless,
this coincidence is not enough to claim a causal relationship between
tourism inflows and the spread of the pandemic. We take advantage of
information at the municipality level, similar to Armillei et al. (2021),
to estimate how sudden increases in tourism-related mobility impact
the pandemic’s outbreak.

The lifting of mobility restrictions can be interpreted as a policy
shock, allowing us to study the impact of tourist flows on COVID-
19 cases in Sardinia municipalities. Noteworthy is that, in Sardinia,
the movement of tourists is concentrated in seaside locations, with
only a small fraction visiting the inside of the island.9 Given these
characteristics, the case of Sardinia can be seen as a natural experiment
to properly analyze the effect of the re-openings and movements of
people during the early diffusion of a new virus. The lack of tourists
before restrictions were lifted, coupled with their preferences to visit
seaside/touristic locations, allows us to use a standard difference-in-
differences approach to investigate the causal relationship. As treated
units, we consider seaside municipalities, which are also classified as
tourist destinations by the Italian National Institute of Statistics (ISTAT,
2022). To ensure the robustness of our findings, we also broaden our
criteria for treated units to include all municipalities classified as tourist
destinations by ISTAT.

The difference-in-differences approach is only able to capture whethe
there is a difference between the treated and control units in the
outbreak of the epidemic but does not provide an estimate of how
many tourists are necessary to trigger the outbreak of the epidemic as
it leverages on indirect measures capturing the presence of tourists.

To quantify how the infection grows depending on tourism, we rely
on a continuous difference-in-differences approach.10 For each Sardinia

5 Sardinia is an Italian region and the second-biggest Mediterranean island.
6 Also, the fact that the island has six main access points (three by sea and

hree by air), with limited connections in the winter season, allowed for agile
ccess control during 2020.

7 See Guardian, link
8 See Pietromarchi V. at link and Matthews, at link.
9 In 2019, the percentage of tourist attendance found in July and August
as 50%; this share rose to 82% in the months between June and September,

learly signaling the presence of sun-and-sand tourism (CRENOS, 2021).
10 Our approach mimics the one of Batalha et al. (2022). As they, we
cknowledge that inference with a continuous treatment variable requires a
tronger validation for the parallel trends assumption, as outlined in Callaway
t al. (2021).
2

municipality we have information on Arrivals (number of tourists that
visited the municipality in the specific month) and Overnight stays
(number of arrivals multiplied by the number of days in Sardinia). We
exploit this information to compute, for each Sardinian municipality, a
monthly measure of tourism intensity, in terms of the local population.
Overall, the analyses uncover a positive and statistically significant
impact of tourism inflows on the outbreak of the pandemic, providing
additional evidence that population density is a crucial ingredient in
the spread of COVID-19.

We verify the validity of our main results by conducting robustness
checks. First, we consider a specification of our event study which
extends the treatment period. Second, we employ an Instrumental
Variables (IV) approach that similarly to the continuous difference-in-
differences, produces estimations using as a measure of tourist inflows
either data on Arrivals or on Overnight stays.

Our paper relates to several strands of the literature. Since the
pandemic’s start, the complex relationship between COVID-19 and
socio-demographic and economic features started to be investigated
from several perspectives (Armillei et al., 2021). Interestingly, Ascani
et al. (2021) found that individuals’ mobility was an effective trans-
mission channel in small local market areas. Mobility and lockdown
policies limited the spread (Rader et al., 2020; Tantrakarnapa et al.,
2020; Amuedo-Dorantes et al., 2021; Farzanegan et al., 2021; Moosa
and Khatatbeh, 2021; Perra, 2021). Krisztin et al. (2020) and Han
et al. (2021) underscore the significance of international flights, pre-
senting evidence of the pathogen’s ability to traverse considerable
distances via global travel networks. Laroze et al. (2021) and Han et al.
(2021) both demonstrate substantial and positive connectivity-driven
spillover effects in virus transmission through commuter flow data.
Notably, Glaeser et al. (2022) establish a direct correlation between
COVID-19 cases per capita and mobility by analyzing zip code data
from five U.S. cities. Building upon this line of thought, Gianmoena
and Rios (2023), using cross-province population movements within
Italian provinces, observe that a rise in infections within a specific
province yields a noteworthy and statistically meaningful impact on the
infections occurring in neighboring provinces.

However, the impact of tourism movements on the spread of COVID-
19 has not yet been thoroughly analyzed. Indeed, the literature con-
centrates on studying the impact of the pandemic on tourism in terms
of its effect on arrivals in a set of countries (Karabulut et al., 2020
consider 129 countries), a single country (Della Corte et al., 2021 for
Italy; (Batalha et al., 2022) for the housing market in Portugal), or top
urban destinations (Anguera-Torrell et al., 2021 study 16 worldwide
cities). A more limited strand of studies has tried to uncover the reverse:
the effect of tourism on the spread of COVID-19. On this matter, Mallap-
aty (2020) considers the effect of cruise tourism on COVID-19, offering
the first hint that the mobility of people for tourism reasons could be a
leading driver of propagation. For instance, Farzanegan et al. (2021),
studying the role of tourism in the virus outbreak, find a positive
correlation between countries with higher flows and COVID-19 cases
and deaths; they conclude that tourism may have facilitated the spread
of the virus. Interestingly, Casini and Roccetti (2020) investigate the
effect of domestic tourism flows on new infections of COVID-19 in
the Italian regions by using the Italian flows in 2019 because of the
unavailability of 2020 observations. Their findings suggest that tourism
movements influenced the spread of COVID-19 in 2020, confirming the
intuition provided by the observation of daily COVID-19 data. Armillei
et al. (2021) also studied the Italian case, examining the relationship
between the first wave of COVID-19 in March 2020, center-periphery
dynamics, and related socio-demographic and economic factors.

The plan of the paper is as follows. The next Section describes the
institutional context. Section 3 describes the data used, along with the
preliminary evidence. Section 4 defines the empirical strategy used to
uncover the causal relationship. Section 5 reports the empirical results.
Section 6 verifies the validity of our main findings by conducting
several robustness checks. Section 7 discusses the limitations of the
study and identifies areas for further research. Section 8 concludes the

paper.

https://www.theguardian.com/world/2020/sep/06/how-sardinia-went-from-safe-haven-to-covid-19-hotspot
https://www.aljazeera.com/news/2020/8/28/italys-busy-summer-lights-fuse-oncoronavirus-resurgence-fears
https://www.afar.com/magazine/is-italy-reopening-and-when-will-i-be-able-to-visit
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Fig. 1. Timeline of regulations in Italy during 2020.
Source: Our elaboration.
Table 1
Descriptive statistics.

Nonseaside location Seaside location

Mean SD Obs. Mean SD Obs.

COVID-19 cases 1.08 5.72 1525 4.23 20.0 325
Arrivals 54.0 281.8 1525 3535.7 6154.4 325
Overnight stays 150.0 712.7 1525 17 118.3 31 389.9 325
Population 3183.4 8405.3 1525 10 261.7 22 024.7 325
Tourism location 64% 0.48 1525 100% 0 325

N. of locations (municipalities) 305 65
2. Institutional context

Italy was the first European country that had to face the spread
of the new COVID-19 virus in the beginning of 2020. With very little
information concerning the characteristics of the disease and with a
rapid spread in the number of cases, Italian policymakers implemented
very rigid rules to reduce the diffusion of the virus, as noted by Vinceti
et al. (2020). The northern region of Lombardy was hit first and put
in lockdown on March 8, 2020. Soon, the policymakers realized how
serious the situation was, and on March 11, 2020, the orders came to
stop all non-necessary business and services activities. Ten days later,
travel between regions was not allowed, and only in June 2020 free
mobility across Italian regions was restored.11

Fig. 1 displays the unfolding of the regulations in Italy in 2020.
hese measures showed good performance in stopping the spread of
he virus. On June 3, 2020, with COVID-19 cases almost confined
n the northern region of Lombardy, the mobility between regions,
usinesses, and services started again.12 People were free to move

across the country at this stage, while international travels and arrivals
were still partially regulated. We highlight that tourism flows did not
restart immediately: very few people were willing to move for leisure
purposes before July 2020, as discussed in Section 3.1.

3. Data

To investigate the relationship between touristic inflows and the
evolution of COVID-19 cases, we retrieve data on both variables at the
municipality levels.

Data on COVID-19 cases are provided by the Italian National In-
stitute of Health (Istituto Superiore di Sanita, ISS) upon the authors’
request.13 ISS supplied information on the number of COVID-19 cases
for each Sardinian municipality for each month of the year 2020.
Section 3.1 describes the evolution of COVID-19 cases in Sardinia
during this period.

11 See the document of the relative Italian DPCM link and of the Italian
azzetta Ufficiale link.
12 See Gazzetta Ufficiale: link.
13 For privacy reasons, municipalities that record a positive number of cases
ut fewer than 5 do not report the exact number of cases. In our computations
3

nd estimations, we replace the 0-5 interval with its average, which is 2.5.
Data on tourism flows are provided by SIRED, a data collection
and processing information system provided by the Region of Sardinia
(see link), from which we retrieve, for all Sardinian municipalities,
information on Overnight stays (the number of tourists multiplied by
the days of journey) and Arrivals (number of arrivals). In Sardinia,
the bulk of tourism takes place during the summer, with the peak
in the month of August (CRENOS, 2021). Importantly, the allocation
of tourists among Sardinian municipalities is not random, with the
vast majority deciding to visit Sardinia during the summer period in
municipalities located close to the seaside (see Figs. 2b and 2c), with
few individuals going to places inland. To capture the difference in
tourist attractiveness, we take advantage of a dataset produced by
ISTAT that classifies Sardinian municipalities according to the type of
tourism. Although all seaside municipalities are classified as tourist
locations, 64% of Sardinian municipalities located far from the seaside
meet the requirements to be classified as touristic municipalities, as
shown in Table 1. From Table 1 we can also see that seaside locations
host, on average, a larger population than nonseaside locations.

Table 1 reports the descriptive statistics on the number of COVID-
19 cases and tourist inflows at the municipal level, differentiating
between seaside and nonseaside locations.14 Statistics are from the
municipalities in Sardinia from May 2020 to September 2020. We
report the mean, standard deviation, and total non-null observations
divided by nonseaside or seaside location.

Table 1 also reports that COVID-19 cases in seaside municipalities
were almost four times higher than those counted in nonseaside munic-
ipalities. Arrivals and Overnight stays were also much higher in seaside
municipalities than in nonseaside municipalities.

Finally, we collect information about each municipality from the
2011 Census regarding the housing situation, employment and educa-
tion situation, and labor mobility, employed to use as controls in part of
our empirical analyses.15 Specifically, we retrieve a housing crowding
index, the percentage ratio of unused buildings to total buildings, the
share of large families, the female employment rate, the unemployment
rate, an index of long-range mobility, the ratio between the area of
population centers and cores to the total area, the share of illiterates,
the share of adults with a high school diploma or degree, the share

14 Table A.1 in the Appendix provides a detailed description for each
variable considered.

15 For further information please visit the ISTAT website, see link.

https://www.lavoro.gov.it/documenti-e-norme/normative/Documents/2020/DPCM-11-marzo-2020.pdf
https://www.gazzettaufficiale.it/eli/id/2020/03/22/20A01807/sg
https://www.gazzettaufficiale.it/eli/id/2020/05/16/20G00051/sg
https://sired.sardegnaturismo.it/
https://ottomilacensus.istat.it/
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Fig. 2. Geographical distribution.
of employment in high-medium-skilled occupation variation, and the
intercensual variation.16

During the summer of 2020, following the resumption of travel, Sar-
dinia recorded a total of 1,148,720 tourists in July, August, and Septem-
ber. Notably, 93% of these tourists opted to lodge in seaside towns.

Panel (a) of Fig. 2 depicts the geographical distribution of COVID-
19 cases (in percentage), panel (b) shows touristic arrivals, and panel
(c) reports the distribution of Overnight stays. All figures refer to the
month of August. Specifically, panel (a) shows the geographical dis-
tribution of the percentage of COVID-19 cases in August in terms of
inhabitants (population of each municipality). Panel (b) depicts the
tourist arrivals in each municipality in absolute value. The third one
reports the Overnight stays in absolute value (Arrivals multiplied by days
of stay). Fig. 2 allows us to easily spot the similarities between COVID-
19 cases and touristic presence during August in Sardinia. In addition, it
shows that both tourism and COVID-19 cases were concentrated within
seaside municipalities.

3.1. Preliminary evidence

According to the World Health Organization, COVID-19 is spread
in three main ways: (i) the virus can spread from an infected person’s
mouth or nose through coughing, speaking, and breathing; (ii) in poorly
ventilated settings where aerosols remain suspended in the air; and
(iii) by touching the eyes, mouth, or noses after touching contami-
nated surfaces. The spread of the virus requires people contact and
is facilitated by the gathering of people, especially in closed places.
The strict Italian confinement policies implemented between March

16 In the Appendix in Appendix A, Table A.1 provides a detailed explanation
of these variables.
4

2020 to June 2020 effectively stopped the spread of the epidemic.
Fig. 3, shows the evolution of the number of COVID-19 cases per 1000
inhabitants in Sardinia, between May 2020 and September 2020.17

Preventing people’s movement was highly effective in reducing the
diffusion of COVID-19 cases, especially in isolated regions like Sardinia,
where the virus was virtually absent once mobility was restored (see
Fig. 3). However, from panel (a) of Fig. 3, we see that the number
of cases started increasing in July 2020, with Sardinia experiencing a
substantial number of cases, in seaside locations starting from August.
In panel (b) of Fig. 3, we report the evolution considering separately
seaside municipalities versus nonseaside locations. The display of this
graph corroborates the intuition that, after lifting the mobility restric-
tions, COVID-19 cases increased faster in seaside locations. Assuming
that COVID-19 was absent in Sardinia, as suggested by Fig. 3, it is
natural to infer that touristic inflows were a likely trigger of the spread
of COVID-19 cases in Sardinia. As our primary focus is to investigate
the influence of tourism on the pandemic’s outbreak the benchmark
econometric analysis studies the evolution of COVID-19 cases from May
2020 up to September 2020. Nevertheless, we also conduct a similar
analysis that includes data for March, April, October, and November as
part of our robustness checks.

Section 5 assesses the existence of a causal link between tourist
inflows and COVID-19 cases by implementing difference-in-differences
estimations. The next Section defines and discusses our identification
strategy.

17 Appendix B.1 of the appendix reports similar figures including data for
the months of October and November. While witnessing a similar substantial
increase in COVID-19 cases among seaside municipalities, Fig. B.1 suggests
that additional spatial and dynamic effects influenced the evolution of the
pandemic during the autumn of 2020.
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Fig. 3. Cases evolution.
Notes: Panel (a) reports the evolution of the number of COVID-19 cases in terms of 1000 inhabitants. Panel (b) reports the number of cases (per 1000 inhabitants)
differentiating between nonseaside (solid line) and seaside (dashed line) locations.
4. Empirical strategy

Uncovering whether inflows of people due to economic activities
have a direct impact on the diffusion of COVID-19 cases is challenging
for several reasons. First, it is not straightforward to differentiate mo-
bility arising from other reasons (such as work) from touristic inflows.
Second, locations characterized by a higher population density facil-
itate pandemic outbreaks, as discussed in Section 1. Nevertheless, the
particular characteristics of Sardinia make these concerns less effective.
In fact, as outlined in Section 2, most of the inflows to Sardinia
during the summer period are because of tourism. Also, we cannot rule
out the hypothesis that the virus was already present in the resident
population, giving rise to a spurious correlation with tourism. However,
the data reported in Section 3.1 show that COVID-19 was almost absent
in Sardinia before lifting mobility restrictions.

To uncover the causal relationship between tourist inflows and
COVID-19 cases, we rely on one of the most widely utilized econometric
techniques for analyzing observational data: difference-in-differences.
This method allows us to exploit the quasi-experimental variation in
tourist inflows induced by relaxing mobility restrictions.

A crucial assumption for a difference-in-differences estimation is
that the evolution of COVID-19 cases would have had parallel trends
between the control and treated units. In our analysis, this means
that, without lifting the mobility restrictions (i.e., absent tourism), the
5

trend in the number of cases among treated and non-treated locations
would have not changed. To evaluate the soundness of this identifying
assumption in Section 3.1, we show that there is almost no difference in
the evolution of cases before July 2020 between seaside and nonseaside
locations.18 Taking advantage of the fact that the lifting of restrictions
in terms of tourist inflows affects mainly seaside municipalities, a
difference-in-differences estimation should capture the average impact
of tourism inflows on the number of COVID-19 cases.19 The standard
difference-in-differences approach captures the impact of tourism on
the outbreak of the COVID-19 pandemic by leveraging the differential
spread of tourists among seaside and nonseaside municipalities. How-
ever, it provides only an indirect measurement, which precludes us
from deriving the elasticity of COVID-19 cases in response to variations
in tourist inflows. To address this limitation, in line with Batalha et al.
(2022) and González-Val and Marcén (2022), we employ a continuous
difference-in-differences specification. Specifically, we define our con-
tinuous treatment (the dosage) as the share of tourists in terms of the

18 We obtain comparable evidence when the treatment group includes all
the municipalities classified as touristic by ISTAT.

19 We acknowledge that the lifting of restrictions affected the remaining
municipalities to a lesser degree. It should be noted that this effect goes in
the opposite direction, downgrading the estimate’s magnitude.
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resident population, interacting this variable with the periods where
mobility was restored. Furthermore, in Section 6, we also evaluate
our benchmark findings by implementing an instrumental variable
estimation.

5. Results

This section presents the empirical findings. First, in Section 5.1
we evaluate whether the parallel trends assumption holds. Section 5.2
reports the results of the difference-in-differences estimations.

5.1. Panel event study

We start by considering a standard panel event study setup (Clarke
and Tapia-Schythe, 2021), to investigate whether tourist locations are
the ones that triggered the COVID-19 outbreak experienced in Sardinia
during the summer of 2020.

First, we include in the treated group only seaside municipalities,
which are a subset of the ISTAT-defined tourist destinations, see Sec-
tion 3. Our analysis exploits the fact that the vast majority of tourists
visit seaside municipalities, as shown in panels (b) and (c) of Fig. 2 and
discussed in Section 3.1. To ensure a comprehensive analysis, we also
utilize the ISTAT classification to distinguish between municipalities in
Sardinia that are considered tourist destinations and those that are not.
In this context, the treated group comprises municipalities classified
as tourist destinations, while the remaining ones serve as the control
group. To evaluate the parallel trends assumption we estimate the
following specification:

𝑌𝑚,𝑡 = 𝛼 +
𝐽
∑

𝑗=1
𝛽𝑗 (𝐿𝑒𝑎𝑑 𝑗)𝑚,𝑡 +

𝐾
∑

𝑘=1
𝛾𝑘(𝐿𝑎𝑔 𝑘)𝑚,𝑘 +𝛬𝑋𝑠𝑡 + 𝜙𝑚 + 𝛾𝑡 + 𝜖𝑚,𝑡. (1)

On the left side of Eq. (1) 𝑌𝑚,𝑡, is the number of monthly (denoted by the
ubscript 𝑡) COVID-19 cases recorded for each Sardinian municipality

(denoted by the subscript 𝑚). On the right side of Eq. (1) 𝐿𝑒𝑎𝑑𝑠 and
𝑎𝑔𝑠 are dummy variables capturing whether the treated municipality
as a given number of periods before (𝑗) or away (𝑘) from the lifting of

mobility restrictions. Estimating the coefficients on the Lead variables
allows us to test for the existence of pre-trends. Conversely, the estima-
tion of the coefficients of the Lag variables allows us to evaluate the
existence of dynamic effects of the tourism inflows on COVID-19 cases.
The first leading variable refers to May which is two months before the
inflow of tourists restarted; accordingly, we have 𝑗 = 2. In addition,
we account for three post-periods, 𝑘 = 3.20 To estimate Eq. (1), we set
the baseline to the first lag (which refers to July 2020, when tourist
inflows restarted). In line with the standard approach of a panel-event
study, we include both municipality and month fixed effects, 𝜙𝑚 and
𝑡, respectively, in Eq. (1).

With these sets of fixed effects, the control vector, 𝑋𝑚,𝑡, includes
only month-changing variables. Specifically, in Eq. (1) 𝑋𝑚,𝑡, represents
the percentage of monthly arrivals from Sardinia, No EU Countries,
and North and Centre Italy. These variables allow us to control for the
difference in the spread of the virus according to tourist origin area.

In a panel event study, it is important to account for the possibility
of serial correlation in the outcome variable. This issue is usually dealt
with by clustering the standard errors at the unit level. Accordingly, we
cluster the standard errors at the municipality level.

Fig. 4 presents the Leads and Lags estimates. The dots represent
the point estimates, and the blue and black bars report 90% and 95%
confidence intervals, respectively.

20 The Leads and Lags variables take a value equal to 1 if the municipality
s in the treated group (touristic/seaside) and the month is the 𝑘 period
efore the event (Leads) or 𝑗 periods after the event (Lags). Otherwise, these
ariables take a value equal to zero. For non-treated municipalities, these
ummy variables always take values equal to zero.
6

Fig. 4, in Panel a, shows the estimates obtained when we consider
unicipalities located along the seaside as the treated group; panel b,

eports the estimates when the treated municipalities include all the
unicipalities classified as touristic by ISTAT.

We estimate a sizable impact once we consider the subset of seaside
unicipalities as treated units; see panel 𝑎 of Fig. 4. In this case, we

stimate a difference of + 8 cases in August for the treated group. The
ffect persists as we uncover a positive and weaker effect in September
+6.8 cases). The results reported in panel 𝑏 of Fig. 4 also depict a
ositive association between COVID-19 cases and tourist municipalities
n August and September (+3 cases for both months). The coefficients
btained for the Leads variables align with the absence of pre-trends in
he outcome variable.21

We also perform an event study to assess the absence of pre-
xisting trends for the continuous treatment, specifically the monthly
nflow of tourists in Sardinian municipalities (the dosage). This ap-
roach closely aligns with the methodology employed by Batalha et al.
2022) and González-Val and Marcén (2022), both of whom explored
elated subjects using a continuous difference-in-differences specifi-
ation.22 More precisely, we replace the treatment indicator with a
ariable that represents the variations in monthly tourist inflows across
ardinian municipalities throughout the treatment period. For each
unicipality, we compute the monthly share of tourists relative to the

esident population, denoted as 𝑠𝑡𝑚,𝑡 =
( 𝑇 𝑜𝑢𝑟𝑖𝑠𝑡𝑠𝑚,𝑡

𝑃𝑜𝑝𝑚

)

. Fig. 5 illustrates
the results using Arrivals data as a measure of tourist inflows and it
ligns with the parallel trends assumption.23 Comparable findings are
lso obtained when utilizing data on Overnight stays, see Section 3.24

In the following section, we delve deeper into the continuous treat-
ent specification, where we also present the results derived from esti-
ating both the standard difference-in-differences and the continuous

pecification.

.2. Difference-in-differences

To uncover the impact of tourist inflows on the COVID-19 out-
reak we estimate a standard difference-in-differences specification by
mploying both definitions of the treated units, specifically:

𝑚,𝑡 = 𝛼 + 𝛽𝑃𝑜𝑠𝑡 ∗ 𝑇 𝑟𝑒𝑎𝑡 + 𝛬𝑋𝑠𝑡 + 𝜙𝑚 + 𝛾𝑡 + 𝜖𝑚,𝑡. (2)

n the left side of Eq. (2) 𝑌𝑚,𝑡, is the number of monthly COVID-
9 cases reported in each Sardinian municipality. The subscript 𝑚
enotes the municipality, while the subscript 𝑡 accounts for the month.
𝑜𝑠𝑡 is a binary variable that assumes a value of 1 when the current
onth is after June, while 𝑇 𝑟𝑒𝑎𝑡 is a binary variable that indicates

he treated municipalities. Thus, with our identifying assumptions, 𝛽
f the interaction 𝑃𝑜𝑠𝑡 ∗ 𝑇 𝑟𝑒𝑎𝑡 captures the effect of tourism inflows

on the spread of COVID-19 cases in the treated municipalities. Similar
to Eq. (1) 𝜙𝑚 and 𝛾𝑡 are the municipalities and month-fixed effect.

e also consider specification with and without the vector 𝑋𝑠,𝑡 which
includes the month-changing controls. Table 2 reports the estimates of
our standard difference-in-differences specification.

21 Table A.2 in the appendix reports the empirical estimates obtained
considering Eq. (1).

22 Batalha et al. (2022) show that COVID-19 had a negative impact on
short-term rentals. They employed a continuous difference-in-differences spec-
ification with the treatment variable being the share of short-term rental
units. González-Val and Marcén (2022) explored the role of mass gatherings
on the spread of COVID-19, with the treatment variable being the number of
attendees per 100 inhabitants at mass gathering events.

23 We acknowledge that Callaway et al. (2021) proved that pre-trends tests
used for the binary case are not necessarily useful for the continuous case. A
stronger version of this assumption is required. Units treated with the same
dose should follow the same evolution.

24 Results using the latter measure are available upon request.
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Fig. 4. Panel event study estimates.

Fig. 5. Continuous treatment.
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Table 2
Standard difference-in-differences: linear specification.

(1) (2) (3) (4)
Seaside Touristic Seaside Touristic

Treatment 5.016** 2.210*** 4.552** 2.321***
(2.440) (0.768) (2.311) (0.834)

Observations 1850 1850 1850 1850
Controls no no yes yes
Municipality fixed effects yes yes yes yes
Month fixed effects yes yes yes yes

Notes: We report the results using seaside locations as the treatment group (Columns (1) and (3)) and tourist locations
(Columns (2) and (4)). The time span for the study ranges from May 2020 to September 2020. Standard errors in
parentheses are clustered at the municipality level. * 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01.
Table 3
Standard difference-in differences: log-linear specification.

(1) (2) (3) (4)
Seaside Touristic Seaside Touristic

Treatment 0.332*** 0.321*** 0.280*** 0.316***
(0.0982) (0.0500) (0.0958) (0.0516)

Observations 1850 1850 1850 1850
Controls no no yes yes
Municipality fixed effects yes yes yes yes
Month fixed effects yes yes yes yes

Notes: We report the results using seaside locations as the treatment group (Columns (1) and (3)) and tourist locations
(Columns (2) and (4). The time span for the study ranges from May 2020 to September 2020. Standard errors in parentheses
are clustered at the municipality level. * 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01.
The results presented in Table 2 offer compelling evidence of a posi-
ive causal link between tourism inflows and the outbreak of COVID-19.

hen considering solely the seaside municipalities in the treated group,
e observe a substantial effect, resulting in an increase of approxi-
ately +4.5 to +5 cases (as shown in columns (1) and (3) of Table 2).
hen we expand the treated group to encompass all municipalities

lassified as tourist destinations, the estimated effects, while somewhat
educed in magnitude, remain highly statistically significant, at around
2.2 to +2.3 cases (as shown in columns (2) and (4) of Table 2).

The specifications presented in Table 2 indeed indicate a positive
ausal relationship between tourist inflows and the COVID-19 outbreak
n Sardinia. However, interpreting the exact magnitude of this impact
an be challenging. To simplify the interpretation, we adopt a slightly
odified version of Eq. (2). In this new specification, similar to Glaeser

t al. (2022), we do not use the absolute number of cases as the left-
and side (LHS) variable. Instead, we employ the logarithm of the
onthly number of cases at the municipal level. To ensure continuity

n our analysis and preserve observations with zero values, we add
to the number of cases before taking the logarithm.25 Notably, this

adjustment allows us to interpret the estimate of the interaction term as
an elasticity, effectively measuring the percentage increase or decrease
in COVID-19 cases in tourist destinations during the treatment period.
The results of this supplementary analysis are presented in Table 3. The
findings strengthen the evidence of a positive causal impact of tourist
inflows on the COVID-19 outbreak.

These additional estimates also indicate that there was a statistically
significant higher number of COVID-19 cases in tourist municipalities
during the treatment period. Specifically, results suggest that tourism
was associated with a larger number of cases, with an impact ranging
from 𝑒0.28 = 32% to 𝑒0.32 = 39%, depending on the definition of treated
units, when including month-changing controls.26

25 Zeros are high prevalent in our dataset representing 82.14% of the total
bservations.
26 We remain cautious in interpreting these estimates as average treatment
ffects. In fact, our sample includes a large percentage of zeros (82%), and
he 11% of observations record a positive number of cases stored as 2.5, see
ection 3. It is likely, that the magnitude of the estimated effect is sensitive
8

o this rounding. t
This first set of estimations provides significant evidence of the
direct influence of tourist inflows on the COVID-19 outbreak experi-
enced in Sardinia during the summer of 2020. Nevertheless, the binary
indicators used heretofore to examine the impact of tourism on the
occurrence of COVID-19 cases are indirect measures that provide only
an average effect for treated units. These indicators do not account
for the variations in tourist inflows among different destinations in
Sardinia. This can be important as there is significant variation in the
number of tourists received by different municipalities, even among
seaside municipalities. To address this heterogeneity, we employ a
continuous difference-in-difference estimation.

Similar to related studies (Batalha et al., 2022; González-Val and
Marcén, 2022) we replaced our binary treatment indicator with a
continuous treatment variable. This approach enables us to consider
the variation in tourist inflows among the treated municipalities and
estimate the direct impact of tourist inflows on COVID-19 cases. The
treatment variable, denoted as 𝑠𝑡𝑡𝑚 and introduced in the preceding sec-
tion, represents monthly tourists in Sardinian municipalities relative to
the local population.27 The dependent variable, the number of monthly
COVID-19 cases reported in each Sardinian municipality is taken in
logs, as in the estimations reported in Table 3.

For completeness, we present the new specification below, which
involves a slight modification of Eq. (2), as follows:

𝑙𝑛
(

𝑌𝑚,𝑡 + 1
)

= 𝛼 + 𝛽𝑃𝑜𝑠𝑡 ⋅ 𝑙𝑛
(

𝑠𝑡𝑚,𝑡
)

+ 𝜙𝑚 + 𝛾𝑡 + 𝜖𝑚,𝑡. (3)

We estimate two different specifications of Eq. (3) for each of our
two measures of tourist inflows (i.e., Arrivals and Overnight Stays). The
initial specification (Columns 1 and 3 in Table 4) which accounts for
Sardinian residents as part of tourist inflows, thus considering those
who opted to spend their holidays within the region. However, it can be
argued that internal tourists should not be factored in when assessing
the impact of tourist inflows on COVID-19 cases. Hence, we present
the results of an alternative specification (columns 2 and 4 in Table 4)
where the calculation of 𝑠𝑡𝑚,𝑡 excludes local residents.

27 To ensure the inclusion of all observations, we added ones to 𝑠𝑡𝑡𝑚 before
aking logarithms.
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Table 4
Continuous difference-in-differences.

Arrivals Overnight stays

(1) (2) (3) (4)
Overall inflows External inflows Overall inflows External inflows

Treatment 0.411*** 0.518*** 0.202*** 0.236***
(0.120) (0.154) (0.0545) (0.0788)

Observations 1850 1850 1850 1850
Municipality fixed effects yes yes yes yes
Month fixed effects yes yes yes yes

Notes: In Columns (1) and (2), we calculate the share of tourists using monthly Arrival data. In Columns (3) and (4), we calculate the share of
tourists using Overnight stays data. Columns (1) and (3) include the entire number of tourists, whereas Columns (2) and (4) exclude locals from
the calculation of these shares. The time span ranges between May 2020 and September 2020. Standard errors in parentheses are clustered at
the municipality level. * 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01.
The results presented in Table 4 provide additional evidence sup-
porting a causal link between tourist inflows and the COVID-19 out-
break. Notably this new specification provides an approximate estimate
of the elasticity of COVID-19 cases to the share of tourists, resulting
in a figure of 4.1% when internal tourists are included (see Column
1). Interestingly, this estimate rises to 5.1% when we calculate 𝑠𝑡𝑚,𝑡
by excluding local residents, considering our tourism measure only for
individuals arriving from outside the island.

6. Robustness checks

In this section, we enhance the robustness of our findings by first,
extending the time span under analysis and considering an instrumental
variables approach.

In the first set of robustness checks (see Appendix B.1), we extend
the time span to encompass additional months: specifically, March,
April, October, and November. The primary estimates are based on
a shorter time frame (i.e., from May to September). This selection is
consistent with the core focus of our study, which is to investigate the
impact of tourist inflows on the outbreak of the pandemic. Indeed,
on one hand, including March and April in the analysis may inad-
vertently capture some spurious pre-trends that are mitigated by the
implementation of lockdown policies. On the other hand, the trajectory
of COVID-19 cases during the months of October and November is
likely influenced by spatial and dynamic factors that could potentially
confound the influence of tourism (Glaeser et al., 2022). Accounting
for the role of these effects is beyond the scope of this study, which
primarily aims to emphasize the impact of tourism inflows on the
pandemic outbreak. However, in the robustness check, by employing
this wider time span, we repeat the analyses presented in the previous
sections for the benchmark period.

In a first inspection, we visualize the evolution of the number of
COVID-19 cases per 1000 inhabitants in Sardinia, between March 2020
and November 2020. Basically, we produce a figure equivalent to Fig. 3.
Interestingly, the results (Fig. B.2) somewhat align with our benchmark
findings, but the number of monthly COVID-19 cases per 1000 inhabi-
tants in nonseaside locations is higher for October and November 2020.
Afterward, we replicate the panel event study presented in Eq. (1).
During October and November, we observe higher estimates. When
restricting the treatment group to encompass only seaside locations,
these estimates no longer exhibit statistically significant differences
from zero at the significance level. In the final examination of the
extended time span, we perform the standard difference-in-differences
estimations outlined in Section 5.2 with the wider time span. Notably,
the estimates of the model of Eq. (2) are bigger in magnitude and still
highly statistically significant (Tables B.1 and B.2 in Appendix). These
results suggest that considering a wider time span may amplify the role
of tourism in the outbreak of the pandemic by absorbing dynamic and
spatial effects.

In the second robustness check, we consider an instrumental vari-
able (IV) specification to evaluate the robustness of our findings to
9

possible endogeneity concerns (see Appendix B.2 of the Appendix).28

Indeed, data on tourist inflows may also include people traveling
for work or other purposes. Plus, the choice of a tourist destination
could be influenced by the presence and spread of COVID-19 in those
municipalities. However, considering that being a seaside municipality
does not have a direct effect on the spread of COVID-19 cases, we
can address endogeneity concerns by using a dummy variable as an
instrument for tourist inflows. This dummy variable takes the value
of one for seaside municipalities and zero for others. The IV estimates
reported in Tables B.3 and B.4 confirm the role of tourist inflows in
the outbreak of the COVID-19 pandemic. In line with the results of
the continuous difference-in-difference specification, we obtain lower
estimates once we consider Overnight stays to capture the number of
tourists. The lower magnitude obtained when using this variable is
likely due to the fact that the same individual is counted a number
of times equal to the days he/she spent in Sardinia.

7. Discussion

This study highlights a statistically significant relationship between
tourism and increased COVID-19 cases in tourist municipalities. Specif-
ically, We first perform a standard difference-in-differences approach
which shows that there is substantial evidence of a significant impact
especially when focusing on seaside municipalities in the treated group.
When the treated group includes all municipalities classified as tourist
destinations, the estimated effects remain statistically significant. Sub-
sequently, employing a continuous difference-in-differences approach
yields additional evidence that strengthens the causal link between
tourist inflows and the COVID-19 outbreak. Importantly, this approach
provides an approximate estimate of the elasticity of COVID-19 cases
with respect to the share of tourists. Specifically, it yields a 4.1%
increase in cases when including internal tourists. Interestingly, this
estimate increases to 5.1% when we exclude local residents, focusing
solely on individuals arriving from outside the island.

Nonetheless, the estimates might be sensitive to data characteristics.
In the standard difference-in-differences analysis, it is possible that
the binary treatment indicators fall short of capturing variations in
tourist inflows across diverse destinations in Sardinia, including seaside
municipalities. To address this variability, we adopted a continuous
difference-in-difference approach, replacing the binary treatment in-
dicator with a continuous treatment variable. The results from the
robustness check (see Section 6) suggest that extending the time frame
under examination could amplify the significance of tourism’s influence
on the pandemic outbreak by incorporating dynamic and spatial effects.
Unfortunately, we cannot assess the significance of these effects in this
study due to the absence of data on internal mobility between seaside
and non-seaside areas. We emphasize that this represents a critical area

28 Batalha et al. (2022) conducts a similar robustness check when studying
the impact of COVID-19 pandemic on short-time rentals.
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Table A.1
Descriptive statistics controls.

Mean sd Min Max Count Definition

Sired data

Tourists from Sardinia 0.12 0.22 0 1 1850 Percentage of monthly arrivals from Sardinia

Tourists not from EU 0.0036 0.032 0 1 1850 Percentage of monthly arrivals from EU
countries

Tourists from the north of Italy 0.088 0.16 0 1 1850 Percentage of monthly arrivals from Northern
Italy

Tourists from the center of Italy 0.034 0.070 0 0.79 1850 Percentage of monthly arrivals from Center
Italy

Istat data

Population 4426.9 12 268 99 154 267 1850 Population in 2019

Census data

Housing crowding index 0.28 0.30 0 2 1850 Percentage ratio of occupied dwellings with
less than 40 sq m and more than 4 components
or with 40–59 sq m and more than 5
components or with 60–79 sq m and more
than 6 components to total occupied dwellings

Unused vs. total buildings ratio 7.54 5.33 0 28.8 1850 Percentage ratio of unused buildings to total
buildings

Large families 1.26 0.74 0 4.20 1850 Percentage ratio of the number of households
with 6 and more members to total households

Female employment 27.6 4.67 15.4 42.6 1850 Percentage ratio of employed females to total
residents females aged 15 years and older

Unemployment 18.9 4.90 6.10 40 1850 Percentage ratio of resident population 15
years and older seeking employment to resident
population 15 years and older in employment

Long-range mobility 4.24 2.28 0.60 15.6 1850 Percentage ratio of resident population
commuting daily for work or study and taking
more than 60 minutes to resident population
commuting daily for work or study

Area incidence centers and cores 2.64 4.40 0.20 57.1 1850 Percentage ratio of the area of towns and
settlements to the total area (sq. km.)

Illiterates 1.64 0.91 0 6.20 1850 Percentage ratio of illiterate to the resident
population aged 6 and older

Adults with a High School or degree 37.0 7.65 19.1 65.9 1850 Percentage ratio of resident population 25–64
years old with high school diploma or college
degree to resident population 25–64 years old

High-medium skilled employment 20.7 5.94 7.60 50.2 1850 Percentage ratio of those employed in
high-medium skilled occupations (legislators,
entrepreneurs, high executives, scientific and
highly skilled intellectual occupations; technical
Occupations) to the total employed

Annual intercensual variation −0.35 0.97 −2.80 3.90 1850 Geometric mean of annual intercensual
variation

Municipality area in sq.km. 64.9 61.9 2.47 547.0 1850 Municipality area in sq.km.
for future research. It is important to note that seaside municipalities
accommodate a substantial number of temporary Sardinian workers
during the summer months, potentially contributing to the spread of
the pandemic when they return to their permanent residences. This
aspect warrants further exploration and calls for additional research to
comprehensively investigate its implications.

8. Conclusions

We investigated the relationship between mobility and the COVID-
19 pandemic by examining the changes in tourist inflows in Sardinia
(Italy) during the summer of 2020. When the Italian government lifted
restrictions on mobility and allowed tourists to visit the island, the
number of COVID-19 cases in Sardinia sharply increased, suggesting
a causal relationship between tourist inflows and the spread of the
virus. Our analyses support the existence of this relationship while also
providing a quantitative assessment.

This paper makes several contributions to the literature on the
relationship between mobility and the spread of COVID-19. First, we
10
provide evidence that changes in mobility facilitated the virus’s spread
during the pandemic’s initial stages. Our analysis reveals a positive and
statistically significant influence of tourism inflows on the pandemic’s
outbreak, further underscoring the pivotal role of mobility for tourism
reasons in the spread of COVID-19. Our study corroborates prior find-
ings, such as those presented by Mallapaty (2020), Farzanegan et al.
(2021), and Casini and Roccetti (2020), while augmenting the existing
body of knowledge demonstrating that tourist inflows can trigger the
spread of COVID-19.

Understanding the trade-off between COVID-19 diffusion and tourism
is crucial because it has significant implications for public health, the
economy, and society as a whole. Governments and policymakers face
a difficult balancing act in managing the trade-off. On the one hand,
they must protect public health and prevent the spread of COVID-
19 by implementing measures such as border closures, quarantine
requirements, and social distancing measures. On the other hand, they
must support their tourism industries and minimize the economic
damage caused by the pandemic.



Economics and Human Biology 52 (2024) 101341A. Caria et al.

*

t
G
i
t
p
p
t
b
r
o
c
o
p
c
h
s
a
f
b
i
d
w

D

c
i

D

A

A

e

t

I
m
b
w
a

Table A.2
Panel event study.

(1) (2) (3)
Seaside Touristic Continuous

May 0.194 −0.273 −1.624*
(0.304) (0.239) (0.884)

June 0.369 −0.172 −0.249**
(0.224) (0.106) (0.125)

August 8.020** 3.122*** 0.992**
(3.813) (1.070) (0.434)

September 6.749* 3.201** 1.083**
(3.702) (1.538) (0.435)

Observations 1850 1850 1850
Municipality fixed effects yes yes yes
Month fixed effects yes yes yes
Controls yes yes yes

Notes: We report the results of the Leads and Lags estimates from the panel event
study specification using as the treatment group seaside locations (Column 1), tourist
locations (Column 2) and employing the continuous specification with the share of
tourists (Column 3). The time span for the study ranges from May 2020 to September
2020. Standard errors in parentheses are clustered at the municipality level. * 𝑝 < 0.10,
* 𝑝 < 0.05, *** 𝑝 < 0.01.

Our study has important implications for policymakers, especially in
erms of the likely appearance of a new virus able to trigger a pandemic.
iven the lack of vaccines and reliable methods for identifying infected

ndividuals in the period considered by our study, our findings suggest
hat caution is necessary for allowing tourism flows, which may undo
revious containment efforts and lead to the continued spread of the
andemic. Moreover, our estimates of the causal effect of tourism on
he spread of COVID-19 allow us to approximately quantify the risk of
alancing public health and tourism-related economic activities. The
elevance of this implication can be weighted in terms of the finding
f Díaz Ramírez et al. (2022). They show that a lower health system
apacity together with higher population density led to a higher level
f mortality. Given this relationship, the decision to allow or restrict
eople’s movements during the pandemic cannot be disentangled from
ritical factors such as the severity of the outbreak, the capacity of local
ealthcare systems, and the availability of effective containment mea-
ures. Ultimately, the trade-off between COVID-19 and tourism requires
delicate balancing of public health and economic considerations. Our

indings emphasize the importance of carefully weighing the risks and
enefits of changes in population density due to people’s movement,
ncluding modifications such as increased travel or reduced social
istancing. This is particularly important in the context of a pandemic,
here even small changes can have significant consequences.
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ppendix A

.1. Data

Table A.1 provides a detailed explanation for each variable consid-
red in our empirical analysis.29

29 We include here explanations of variables employed in Appendix B.2 of
he appendix.
11
A.2. Panel event study: Estimates

See Table A.2.

Appendix B. Robustness checks

In this Section, we evaluate the robustness of our baseline esti-
mations. The next Section considers a wider time span, while Ap-
pendix B.2 exploits an instrumental variable strategy to tackle possible
endogeneity concerns.

B.1. Wider time range

Fig. B.1 reproduces the graphs of Fig. 3, extending the analysis to
include the months of March, April, October, and November. While a
significant increase in COVID-19 cases among seaside locations remains
evident in the aftermath of the end of mobility restrictions, it is likely
that the number of cases relative to the population became higher
among nonseaside locations after September 2020. This graph suggests
that the subsequent evolution of COVID-19 cases was likely influenced
by both dynamic and spatial effects, as discussed in Section 6.

The following Figure reproduces the graphs of Fig. 4 encompassing
a wider time range. Notably, the magnitude of the effect is higher for
the two additional months included in the treatment period. However,
these estimates are slightly below statistical significance at the canon-
ical level when the treated group includes only seaside municipalities.

Finally, Tables B.1 and B.2 present estimations of Eqs. (1) and
(2) with the extended time range. The estimates are both statistically
significant and higher in magnitude. This increase in magnitude can
be attributed to the likely presence of dynamic and spatial effects, as
discussed in Section 6.

B.2. Instrumental variable approach

In this robustness check, we consider instrumental variable specifi-
cations to evaluate the robustness of our benchmark findings to possible
endogeneity concerns, which we already discussed in Section 6. As long
as being a seaside municipality does not have a direct effect on the
spread of COVID-19 cases, we can use a dummy variable that takes
the value of one for seaside municipalities and zero otherwise as an
instrumental variable for tourism inflows. The IV analysis consists of
two equations. Eq. (4) represents the first stage, which relates the
instrument to the endogenous variable. Eq. (5) is the second stage,
utilizing the exogenous part of the endogenous variable to estimate its
effect on the variable of interest. For completeness, we also provide
Eq. (6) which presents the reduced form, which relates the instrument
and the variable of interest. Below we report all the equations:

𝐼𝑛𝑓𝑙𝑜𝑤𝑠𝑚,𝑡 = 𝛼 + 𝛽𝑆𝑒𝑎𝑠𝑖𝑑𝑒 + 𝛬𝑋𝑚,𝑠,𝑡 + 𝜃𝑠 + 𝛾𝑡 + 𝜖𝑚,𝑡, (4)

𝑌𝑚,𝑡 = 𝛼 + 𝛽 ̂𝐼𝑛𝑓𝑙𝑜𝑤𝑠𝑚,𝑡 + 𝛬𝑋𝑚,𝑠,𝑡 + 𝜃𝑠 + 𝛾𝑡 + 𝜖𝑚,𝑡, (5)

𝑌𝑚,𝑡 = 𝛼 + 𝛽𝑆𝑒𝑎𝑠𝑖𝑑𝑒 + 𝛬𝑋𝑚,𝑠,𝑡 + 𝜃𝑠 + 𝛾𝑡 + 𝜖𝑚,𝑡. (6)

We employ two specifications of the IV model described earlier.
n the first specification, we include tourist inflows relative to the
onth of June 2020. As detailed in Section 2, travel resumed at the

eginning of June. However, during this period, the number of tourists
as significantly lower compared to the same month in previous years
nd subsequent summer months.30 In the second specification, aligning

30 SIRED recorded only 76,340 arrivals for the month of June, while the
number of tourists increased to 331,471 in July and exceeded 500,000 in
August. Notably, the majority of June’s inflow likely occurred towards the
end of the month.



Economics and Human Biology 52 (2024) 101341A. Caria et al.
Fig. B.1. Cases evolution.
Notes: In panel (a) of the figure we report the evolution of the number of cases per 1000 inhabitants. In panel (b) we report the number of cases per 1000
inhabitants differentiating between nonseaside and seaside locations.
Table B.1
Difference-in-differences — wide time.

(1) (2) (3) (4)
Seaside Touristic Seaside Touristic

Treatment 11.55** 10.55*** 12.42** 10.66***
(5.477) (2.210) (5.782) (2.239)

Observations 3330 3330 3330 3330
Controls no no yes yes
Municipality fixed effects yes yes yes yes
Month fixed effects yes yes yes yes

Notes: We report the results using as treatment group the (1 and 3) seaside locations (2 and 4) tourist locations. The time
span ranges between March 2020 and November 2020. Standard errors in parentheses are clustered at the municipality
level. * 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01.
with our continuous difference-in-differences approach, we consider
only tourist inflows after June 2020. Both specifications include month
(𝛾) and district-fixed effects (𝜃).31

In our IV specification, similar to the continuous difference-in-
differences estimations, we produce estimations using as a measure of
tourist inflows either data on Arrivals or on Overnight stays. We also
include variables capturing the monthly variation of tourists accounting

31 It is worth noticing that the reduced form of the second specification
almost coincides with our difference-in-differences specification.
12
for their origin, the municipality population size, and other variables
capturing municipality heterogeneity regarding housing, demographic,
employment and education situation, and mobility for each munici-
pality (𝑋).32 In Table B.3, we report the estimations when using an

32 Specifically, we include as controls the percentage of monthly arrivals
from Sardinia, from No EU Countries, from North and Centre Italy, and the
population and the municipality area in sq. kilometers in 2019; we also
include information from the 2011 census data: a housing crowding index,
the percentage ratio of unused buildings to total buildings, the incidence of
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Fig. B.2. Panel event study estimates.
Table B.2
Difference-in-differences log-lin — wide time.

(1) (2) (3) (4)
Seaside Touristic Seaside Touristic

Treatment 0.338*** 0.433*** 0.344*** 0.442***
(0.0903) (0.0580) (0.0907) (0.0597)

Observations 3330 3330 3330 3330
Controls no no yes yes
Municipality fixed effects yes yes yes yes
Month fixed effects yes yes yes yes

Notes: We report the results using as treatment group the (1 and 3) seaside locations (2 and 4) tourist locations. The time
span ranges between May 2020 and September 2020. Standard errors in parentheses are clustered at the municipality
level. * 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01.
OLS specification (Columns (1) and (3)) and a Poisson model (Columns
(2) and (4)). An instrumental variable estimation must satisfy two
requirements: (1) relevance and (2) the exclusion restriction. The first
requirement, relevance, means that there should be a strong correlation
between the instrument and the variable of interest. This condition

large families, the female employment rate, the unemployment rate, an index
of long-range mobility, the ratio between the area of population centers and
cores to the total area, the incidence of illiterates, the incidence of adults with
a high school diploma or degree, and he incidence of employment in high-
medium-skilled occupations’ intercensual variation. See Table A.1 for detailed
information.
13
is usually checked by reporting the first stage F-statistic, in terms of
the instrument, see the third row of Tables B.3 and B.4. We obtain
for both cases a value higher than 35 which is well above the rule of
thumb of 10 indicating the relevance of the instrument.33 The second
condition requires that the instrument per se should not influence the
number of COVID-19 cases apart from the mediated effect through
touristic inflows. It is difficult to think of another mechanism in place

33 Following Andrews et al. (2019) we computed the first-stage effective F-
statistic, see Olea and Pflueger (2013), and compared them with the critical
values. Those additional tests, available upon request, are in support of the
relevance condition.
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Table B.3
Impact of touristic inflows on COVID-19 cases: IV estimation.

(1) (2) (3) (4)
OLS POISSON OLS POISSON

Arrivals 0.000509* 0.000113***
(0.000305) (0.0000287)

Overnight stays 0.000105* 0.0000266***
(0.0000633) (0.00000584)

Observations 1850 1850 1850 1850
Adjusted 𝑅2 0.250 0.241
KP F First stage 34.38 34.25
District fixed effects yes yes yes yes
Month fixed effects yes yes yes yes
Controls yes yes yes yes

Notes: Columns 2 and 4 report average marginal effect. The time span ranges between May 2020 and September 2020.
Standard errors in parentheses are clustered at the municipality level. * 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01.
Table B.4
Impact of touristic inflows on COVID-19 cases: IV estimation — instrument seaside after June.

(1) (2) (3) (4)
OLS POISSON OLS POISSON

Arrivals 0.000741** 0.000110***
(0.000341) (0.0000275)

Overnight stays 0.000148** 0.0000260***
(0.0000696) (0.00000556)

Observations 1850 1850 1850 1850
Adjusted 𝑅2 0.270 0.253
KP F First stage 43.26 42.25
Month fixed effects yes yes yes yes
Controls yes yes yes yes

Notes: Columns 2 and 4 report average marginal effect. The time span ranges between May 2020 and September 2020.
Standard errors in parentheses are clustered at the municipality level. * 𝑝 < 0.10, ** 𝑝 < 0.05, *** 𝑝 < 0.01.
part from tourist inflows leading seaside municipalities to experience
larger growth in COVID-19 cases. Similar results are obtained when
e exclude June inflows from the estimations, see Table B.4.
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