62 research outputs found

    Ral GTPases regulate neurite branching through GAP-43 and the exocyst complex

    Get PDF
    Neurite branching is essential for the establishment of appropriate neuronal connections during development and regeneration. We identify the small GTPase Ral as a mediator of neurite branching. Active Ral promotes neurite branching in cortical and sympathetic neurons, whereas Ral inhibition decreases laminin-induced branching. In addition, depletion of endogenous Ral by RNA interference decreases branching in cortical neurons. The two Ral isoforms, RalA and -B, promote branching through distinct pathways, involving the exocyst complex and phospholipase D, respectively. Finally, Ral-dependent branching is mediated by protein kinase C–dependent phosphorylation of 43-kD growth-associated protein, a crucial molecule involved in pathfinding, plasticity, and regeneration. These findings highlight an important role for Ral in the regulation of neuronal morphology

    Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR

    Get PDF
    Axonal retrograde transport is essential for neuronal growth and survival. However, the nature and dynamics of the membrane compartments involved in this process are poorly characterized. To shed light on this pathway, we established an experimental system for the visualization and the quantitative study of retrograde transport in living motor neurons based on a fluorescent fragment of tetanus toxin (TeNT HC). Morphological and kinetic analysis of TeNT HC retrograde carriers reveals two major groups of organelles: round vesicles and fast tubular structures. TeNT HC carriers lack markers of the classical endocytic pathway and are not acidified during axonal transport. Importantly, TeNT HC and NGF share the same retrograde transport organelles, which are characterized by the presence of the neurotrophin receptor p75NTR. Our results provide the first direct visualization of retrograde transport in living motor neurons, and reveal a novel retrograde route that could be used both by physiological ligands (i.e., neurotrophins) and TeNT to enter the central nervous system

    Glial cells are functionally impaired in juvenile neuronal ceroid lipofuscinosis and detrimental to neurons.

    Get PDF
    The neuronal ceroid lipofuscinoses (NCLs or Batten disease) are a group of inherited, fatal neurodegenerative disorders of childhood. In these disorders, glial (microglial and astrocyte) activation typically occurs early in disease progression and predicts where neuron loss subsequently occurs. We have found that in the most common juvenile form of NCL (CLN3 disease or JNCL) this glial response is less pronounced in both mouse models and human autopsy material, with the morphological transformation of both astrocytes and microglia severely attenuated or delayed. To investigate their properties, we isolated glia and neurons from Cln3-deficient mice and studied their basic biology in culture. Upon stimulation, both Cln3-deficient astrocytes and microglia also showed an attenuated ability to transform morphologically, and an altered protein secretion profile. These defects were more pronounced in astrocytes, including the reduced secretion of a range of neuroprotective factors, mitogens, chemokines and cytokines, in addition to impaired calcium signalling and glutamate clearance. Cln3-deficient neurons also displayed an abnormal organization of their neurites. Most importantly, using a co-culture system, Cln3-deficient astrocytes and microglia had a negative impact on the survival and morphology of both Cln3-deficient and wildtype neurons, but these effects were largely reversed by growing mutant neurons with healthy glia. These data provide evidence that CLN3 disease astrocytes are functionally compromised. Together with microglia, they may play an active role in neuron loss in this disorder and can be considered as potential targets for therapeutic interventions

    Specific Immunoassays for Placental Alkaline Phosphatase As a Tumor Marker

    Get PDF
    Human placental (hPLAP) and germ cell (PLAP-like) alkaline phosphatases are polymorphic and heat-stable enzymes. This study was designed to develop specific immunoassays for quantifying hPLAP and PLAP-like enzyme activity (EA) in sera of cancer patients, pregnant women, or smokers. Polyclonal sheep anti-hPLAP antibodies were purified by affinity chromatography with whole hPLAP protein (ICA-PLAP assay) or a synthetic peptide (aa 57–71) of hPLAP (ICA-PEP assay); the working range was 0.1–11 U/L and cutoff value was 0.2 U/L EA for nonsmokers. The intra- and interassay coefficients of variation were 3.7%–6.5% (ICA-PLAP assay) and 9.0%–9.9% (ICA-PEP assay). An insignificant cross-reactivity was noted for high levels of unheated intestinal alkaline phosphatase in ICA-PEP assay. A positive correlation between the regression of tumor size and EA was noted in a child with embryonal carcinoma. It can be concluded that ICA-PEP assay is more specific than ICA-PLAP, which is still useful to detect other PLAP/PLAP-like phenotypes

    A multi-disciplinary commentary on preclinical research to investigate vascular contributions to dementia

    Get PDF
    Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder

    Development of a Nomogram Predicting the Risk of Persistence/Recurrence of Cervical Dysplasia

    Get PDF
    Background: Cervical dysplasia persistence/recurrence has a great impact on women's health and quality of life. In this study, we investigated whether a prognostic nomogram may improve risk assessment after primary conization. Methods: This is a retrospective multi-institutional study based on charts of consecutive patients undergoing conization between 1 January 2010 and 31 December 2014. A nomogram assessing the importance of different variables was built. A cohort of patients treated between 1 January 2015 and 30 June 2016 was used to validate the nomogram. Results: A total of 2966 patients undergoing primary conization were analyzed. The median (range) patient age was 40 (18-89) years. At 5-year of follow-up, 6% of patients (175/2966) had developed a persistent/recurrent cervical dysplasia. Median (range) recurrence-free survival was 18 (5-52) months. Diagnosis of CIN3, presence of HR-HPV types, positive endocervical margins, HPV persistence, and the omission of HPV vaccination after conization increased significantly and independently of the risk of developing cervical dysplasia persistence/recurrence. A nomogram weighting the impact of all variables was built with a C-Index of 0.809. A dataset of 549 patients was used to validate the nomogram, with a C-index of 0.809. Conclusions: The present nomogram represents a useful tool for counseling women about their risk of persistence/recurrence after primary conization. HPV vaccination after conization is associated with a reduced risk of CIN2+

    Tackling gaps in developing life-changing treatments for dementia.

    Get PDF
    Since the G8 dementia summit in 2013, a number of initiatives have been established with the aim of facilitating the discovery of a disease-modifying treatment for dementia by 2025. This report is a summary of the findings and recommendations of a meeting titled "Tackling gaps in developing life-changing treatments for dementia", hosted by Alzheimer's Research UK in May 2018. The aim of the meeting was to identify, review, and highlight the areas in dementia research that are not currently being addressed by existing initiatives. It reflects the views of leading experts in the field of neurodegeneration research challenged with developing a strategic action plan to address these gaps and make recommendations on how to achieve the G8 dementia summit goals. The plan calls for significant advances in (1) translating newly identified genetic risk factors into a better understanding of the impacted biological processes; (2) enhanced understanding of selective neuronal resilience to inform novel drug targets; (3) facilitating robust and reproducible drug-target validation; (4) appropriate and evidence-based selection of appropriate subjects for proof-of-concept clinical trials; (5) improving approaches to assess drug-target engagement in humans; and (6) innovative approaches in conducting clinical trials if we are able to detect disease 10-15 years earlier than we currently do today

    Potential human transmission of amyloid β pathology: surveillance and risks

    Get PDF
    Studies in experimental animals show transmissibility of amyloidogenic proteins associated with prion diseases, Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Although these data raise potential concerns for public health, convincing evidence for human iatrogenic transmission only exists for prions and amyloid β after systemic injections of contaminated growth hormone extracts or dura mater grafts derived from cadavers. Even though these procedures are now obsolete, some reports raise the possibility of iatrogenic transmission of amyloid β through putatively contaminated neurosurgical equipment. Iatrogenic transmission of amyloid β might lead to amyloid deposition in the brain parenchyma and blood vessel walls, potentially resulting in cerebral amyloid angiopathy after several decades. Cerebral amyloid angiopathy can cause life-threatening brain haemorrhages; yet, there is no proof that the transmission of amyloid β can also lead to Alzheimer's dementia. Large, long-term epidemiological studies and sensitive, cost-efficient tools to detect amyloid are needed to better understand any potential routes of amyloid β transmission and to clarify whether other similar proteopathic seeds, such as tau or α-synuclein, can also be transferred iatrogenically

    RalA and the exocyst complex influence neuronal polarity through PAR-3 and aPKC

    No full text
    corecore