245 research outputs found

    Maintaining fixation by children in a virtual reality version of pupil perimetry

    Get PDF
    The assessment of visual field sensitivities in young children continues to be a challenge. Children often do not sit still, fail to fixate stimuli for longer durations, and have limited verbal capacity to report visibility. We investigated the use of a head-mounted VR display, gaze-contingent flicker pupil perimetry (gcFPP), and three fixation stimulus conditions to determine best practices for optimal fixation and pupil response quality. A total of twenty children (3-11y) passively fixated a dot, counted the repeated appearance of an animated character, and watched an animated movie in separate trials of 80s each. We presented large flickering patches at different eccentricities and angles in the periphery to evoke pupillary oscillations (20 locations, 4s per location). The results showed that gaze precision and accuracy did not differ significantly across the fixation conditions but pupil amplitudes were strongest for the dot and count task. We recommend the use of the fixation counting task for pupil perimetry because children enjoyed it the most and it achieved strongest pupil responses. The VR set-up appears to be an ideal apparatus for children to allow free range of movement, an engaging visual task, and reliable eye measurements

    Combination of Genome-Scale Models and Bioreactor Dynamics to Optimize the Production of Commodity Chemicals

    Get PDF
    The current production of a number of commodity chemicals relies on the exploitation of fossil fuels and hence has an irreversible impact on the environment. Biotechnological processes offer an attractive alternative by enabling the manufacturing of chemicals by genetically modified microorganisms. However, this alternative approach poses some important technical challenges that must be tackled to make it competitive. On the one hand, the design of biotechnological processes is based on trial-and-error approaches, which are not only costly in terms of time and money, but also result in suboptimal designs. On the other hand, the manufacturing of chemicals by biological processes is almost exclusively carried out by batch or fed-batch cultures. Given that batch cultures are expensive and not easy to scale, technical means must be developed to make continuous cultures feasible and efficient. In order to address these challenges, we have developed a mathematical model able to integrate in a single model both the genome-scale metabolic model for the organism synthesizing the chemical of interest and the dynamics of the bioreactor in which the organism is cultured. Such a model is based on the use of Flexible Nets, a modeling formalism for dynamical systems. The integration of a microscopic (organism) and a macroscopic (bioreactor) model in a single net provides an overall view of the whole system and opens the door to global optimizations. As a case study, the production of citramalate with respect to the substrate consumed by E. coli is modeled, simulated and optimized in order to find the maximum productivity in a steady-state continuous culture. The predicted computational results were consistent with the wet lab experiments

    Da Per sempre ragazzo a Future: Le antologie della "speranza" dopo il trauma del G8

    Get PDF
    In questo contributo si vuole indagare da un’ottica transgenerazionale e transnazionale il nesso memoria-attivismo in due antologie -- Per sempre ragazzo (2011) e Future (2019) -- prodotte in momenti storici diversi, che rappresentano soggettivitĂ  politiche diverse, e la cui futuribilitĂ  sembra essere condizionata da una genealogia storica diversa. Con l’aiuto della distinzione fatta da Ann Rigney 52018, 2020) tra trauma, speranza e indignazione da un lato, e tra “memory activism” e “memory in activism” dall’altro, si cerca di determinare fino a che punto questi prodotti culturali riescono a veicolare una memoria culturale sia traumatica che propositiva di ciĂČ che in ambedue i casi viene individuato come un’ingiustizia sociale

    Gapwaveguide Automotive Imaging Radar Antenna with Launcher in Package Technology

    Get PDF
    A 77 GHz gapwaveguide radar antenna system with launcher-in-package (LiP) technology is presented in this paper for automotive imaging applications. Firstly, state-of-the-art LiP technology integrated with radar transceivers is proposed. The transceivers are equipped with waveguide interfaces for RF connection, enabling direct integration with waveguide antennas. Robust interconnects for coupling transceivers to waveguide antennas with non-galvanic contacts are proposed using gapwaveguide packaging technology. A simultaneous multi-mode imaging radar system using 4 cascaded aforementioned transceivers is introduced. Designated antenna elements of the system are realized by slot arrays with center-fed ridge gapwaveguides. Ultimately, the imaging radar antenna has a top radiating slot layer, a middle distribution layer and a bottom interconnect layer capable of accommodating 4 LiP radar transceivers with considerable assembly tolerance which is really one of the key aspects for commercial automotive radar applications. Input matching and radiation patterns of the antenna are verified by measurement. The results indicate that the proposed gapwaveguide imaging radar antenna in conjunction with the novel LiP packaging is able to serve the radar system properly. To the best of the authors’ knowledge, the proposed gapwaveguide antenna system is the first imaging radar antenna system ever developed for LiP components. This work provides a compact, high-efficiency and cost-effective solution for the integration of complex radar systems with waveguide antennas

    Maintaining fixation by children in a virtual reality version of pupil perimetry

    Get PDF
    The assessment of the visual field in young children continues to be a challenge. Children often do not sit still, fail to fixate stimuli for longer durations, and have limited verbal ca-pacity to report visibility. Therefore, we introduced a head-mounted VR display with gaze-contingent flicker pupil perimetry (VRgcFPP). We presented large flickering patches at different eccentricities and angles in the periphery to evoke pupillary oscillations, and three fixation stimulus conditions to determine best practices for optimal fixation and pupil response quality. A total of twenty children (3-11y) passively fixated a dot, counted the re-peated appearance of an animated character(counting task), and watched an animated movie in separate trials of 80s each (20 patch locations, 4s per location).The results showed that gaze precision and accuracy did not differ significantly across the fixation conditions but pupil amplitudes were strongest for the dot and count task. The VR set-up appears to be an ideal apparatus for children to allow free range of movement, an engaging visual task, and reliable eye measurements. We recommend the use of the fixation count-ing task for pupil perimetry because children enjoyed it the most and it achieved strongest pupil responses

    Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA

    Get PDF
    The current classification of human sporadic prion diseases recognizes six major phenotypic subtypes with distinctive clinicopathological features, which largely correlate at the molecular level with the genotype at the polymorphic codon 129 (methionine, M, or valine, V) in the prion protein gene and with the size of the protease-resistant core of the abnormal prion protein, PrP(Sc) (i.e. type 1 migrating at 21 kDa and type 2 at 19 kDa). We previously demonstrated that PrP(Sc) typing by Western blotting is a reliable means of strain typing and disease classification. Limitations of this approach, however, particularly in the interlaboratory setting, are the association of PrP(Sc) types 1 or 2 with more than one clinicopathological phenotype, which precludes definitive case classification if not supported by further analysis, and the difficulty of fully recognizing cases with mixed phenotypic features. In this study, we tested the inter-rater reliability of disease classification based only on histopathological criteria. Slides from 21 cases covering the whole phenotypic spectrum of human sporadic prion diseases, and also including two cases of variant Creutzfeldt-Jakob disease (CJD), were distributed blindly to 13 assessors for classification according to given instructions. The results showed good-to-excellent agreement between assessors in the classification of cases. In particular, there was full agreement (100 %) for the two most common sporadic CJD subtypes and variant CJD, and very high concordance in general for all pure phenotypes and the most common subtype with mixed phenotypic features. The present data fully support the basis for the current classification of sporadic human prion diseases and indicate that, besides molecular PrP(Sc) typing, histopathological analysis permits reliable disease classification with high interlaboratory accuracy

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    • 

    corecore