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The current production of a number of commodity chemicals relies on the exploitation
of fossil fuels and hence has an irreversible impact on the environment.
Biotechnological processes offer an attractive alternative by enabling the
manufacturing of chemicals by genetically modified microorganisms. However, this
alternative approach poses some important technical challenges that must be tackled
to make it competitive. On the one hand, the design of biotechnological processes is
based on trial-and-error approaches, which are not only costly in terms of time and
money, but also result in suboptimal designs. On the other hand, the manufacturing of
chemicals by biological processes is almost exclusively carried out by batch or fed-
batch cultures. Given that batch cultures are expensive and not easy to scale, technical
means must be developed to make continuous cultures feasible and efficient. In order
to address these challenges, we have developed a mathematical model able to
integrate in a single model both the genome-scale metabolic model for the
organism synthesizing the chemical of interest and the dynamics of the bioreactor
in which the organism is cultured. Such a model is based on the use of Flexible Nets, a
modeling formalism for dynamical systems. The integration of a microscopic (organism)
and a macroscopic (bioreactor) model in a single net provides an overall view of the
whole system and opens the door to global optimizations. As a case study, the
production of citramalate with respect to the substrate consumed by E. coli is
modeled, simulated and optimized in order to find the maximum productivity in a
steady-state continuous culture. The predicted computational results were consistent
with the wet lab experiments.
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1 INTRODUCTION

Methyl methacrylate (MMA) is a volatile synthetic chemical used
mainly in the preparation of acrylic emulsion and extrusion
resins. Polymers and co-polymers containing methyl
methacrylate are used as solvents, adhesives, sealants, leather
and paper coatings, inks, textiles, dental prothesis, etc.

There are 17 different routes widely used in industry that end
up synthesizing MMA. The main problem with these routes is
that all the precursor molecules (ethylene, propyne, propylene,
tert-butyl alcohol, isobutene and isobutane) have their origin in
non-renewable sources such as petroleum and natural gas whose
extraction is highly damaging for ecosystems (Sugiyama et al.,
2009).

An alternative approach consists of considering citramalate, a
precursor for the synthesis of MMA, which is produced by
Methanocaldococcus jannaschii. The production of citramalate
in M. jannaschii is due to the presence of the gene cimA which
encodes the enzyme citramalate synthase (EC: 2.3.1.182). This
enzyme catalyses the reaction in which one molecule of acetyl-
CoA, one molecule of pyruvate and onemolecule of water react to
produce one molecule of (3 R)-citramalate, one molecule of CoA
and liberating a proton (UniProt Consortium, 2019):

acetyl − CoA + pyruvate +H2O → 3R( )citramalate + CoA

+H+

(1)
One of the most difficult tasks when carrying out the design of

a biological experiment is setting the conditions and parameters
that have to be tracked during the experiment. Computational
models can help overcome these difficulties by providing the
researchers with guidance when designing experiments in the wet
lab, thus avoiding costly trial-and-error approaches.

In Webb et al. (2018), researchers could reach an efficient
bioproduction of citramalic acid by a genetically engineered E. coli
strain which included the gene CimA. The fact that the cell culture
operated in fed-batch mode suggests that the production could be
optimized by changing to continuous culture. In a continuous culture,
a steady state is reached when the macroscopic variables of the tank
remain constant over time. The complexity of continuous cultures lies
in the fact that identical macroscopic conditions may trigger multiple
steady states. The potential steady states of an E. coli continuous
culture are characterized in Fernandez-de Cossio-Diaz et al. (2017).

Flux Balance Analysis (FBA)Orth et al. (2010) has proven to be an
extremely useful approach to analyze steady states of genome-scale
constraint-basedmodels. FBA assumes the attainment of a steady state
of intracellular metabolite concentrations to compute reactions fluxes
by means of a linear programming problem. In addition to analyzing
the potential steady states, a challenging problem when modeling and
optimizing a continuous culture consists of linking the microscopic
variables of the genome-scale model with themacroscopic variables of
the bioreactor, e.g., metabolite concentrations out of the cells.

A variation of the FBA approach, calledDynamic Flux Balance
Analysis (DFBA) (Mahadevan et al., 2002a), can be used to couple
intracellular metabolism with the dynamics of the extracellular
metabolite concentrations. DFBA has been applied for the production

of several metabolites. In Flassig et al. (2016), the production of β-
carotene in green microalgae was optimized for a fed-batch
continuous culture. The work in Hanly et al. (2013) validated and
optimized a yeast dynamic flux balance model in order to determine
the optimum conditions that maximize the production of ethanol in a
batch culture of S. cerevisiae. Two approaches to predict batch growth
of E. coli based on DFBA are introduced in Mahadevan et al. (2002b).
DFBA was applied as well in (Meadows et al. (2010)) with the aim of
simulating simultaneous acetate and glucose consumption and
evaluate the behaviour of E. coli cells in different types of media.
Although DFBA has been applied successfully in many areas, it has
some limitations as it assumes quasi-steady-state conditions (Reimers
and Reimers,2016) and has been used almost exclusively on batch and
fed-batch cultures.

Other methods not based on DFBA, such as k-OptForce, have
been used to integrate kinetics in constraint-based models. For
instance, the optimization of the production of L-serine inmutant
E. coli and triacetic acid lactone in mutant S. cerevisae were
performed in Chowdhury et al. (2014). K-OptForce uses kinetic
rate expressions to redistribute fluxes in the metabolic network,
instead of relying on surrogate fitness functions such as biomass
maximization. For additional information on this topic, a review
of efforts to integrate kinetic information in constraint-based
models can be found in Kim et al. (2018).

In contrast to the previous works, we propose the use of
Flexible Nets (FNs) Júlvez et al., 2018), a modeling framework that
produces analytical models that can be represented graphically and
that are well suited for analysis and optimization, in order to design an
overall computational model that combines both the bioreactor
dynamics and the metabolic network of the cultured organism. In
addition to facilitating the integration of a macroscopic and a
microscopic model, FNs can accommodate uncertain parameters
and can approximate non-linear dynamics. In particular,
constraint-based models Sigmarsdóttir et al. (2020) of metabolic
networks can be straightforwardly mimicked and analyzed by FNs.
Notice that such models do not account for the concentration of
species, and loose flux bounds are usually associated with the
reactions. Moreover, FNs can also model the differential equations
that determine the dynamics of the bioreactor variables, e.g., cell
density, nutrient supply, and metabolite concentration. In this way,
FNs can integrate, in a seamless model, both the genome-scale model
of the culturedmicroorganism and the bioreactor dynamics.We show
how such an integrated model can be developed and exemplify the
process through the modeling and simulation of a system that
produces citramalate by a genetically modified E. coli culture. The
optimization of the model obtained with respect to citramalate
productivity provides the optimal settings, i.e., intracellular fluxes
and bioreactor parameters, that maximize the productivity of
citramalate in a steady-state continuous culture.

2 MATERIALS AND METHODS

2.1 Flexible Nets
Flexible Nets (FNs) is a modeling formalism for dynamic
systems inspired by Petri Nets, see Murata (1989); Silva,
1993) for a gentle introduction. FNs aim to capture the
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relationship between the state and the processes of a given
dynamic system by means of two interconnected nets: the
event net and the intensity net. On the one hand, the event net
models how the processes modify the state variables. On the
other hand, the intensity net models how the state variables
determine the speeds of the processes. In contrast to Petri nets,
both the event and the intensity nets are tripartite graphs
which have three types of vertices: places, transitions and
handlers. The handlers of the event net are called event
handlers, and the handlers of the intensity net are called
intensity handlers. Places (which are depicted as circles) are
associated with metabolites and transitions (which are
depicted as rectangles) are associated with reactions. Event
handlers (which are depicted as dots) capture the change of
concentration of metabolites produced by reactions. Intensity
handlers (also depicted as dots) model how the concentrations
of metabolites determine the speeds of reactions. Although
event and intensity handlers can be distinguished by the net
elements to which they are connected, for clarity the arcs and
edges of event handlers will be drawn in black and those of
intensity handlers in blue.

As an example, the event net in Figure 1A has four places {A,
B, C, D}, two reactions {R1, R2} and two event handlers {v1, v2}.
Such a net models the following reactions:

R1: A → 2 C
R2: 2A + B → D

The stoichiometry of the reactions is modeled by the equalities
associated with the event handlers. In particular, the equalities a = x
and c = 2x of v1 imply that each occurrence of reaction R1 consumes
one unit of metabolite A and produces two units of metabolite C
(such units usually refer to concentrations). On the other hand, the
equalities a = 2x, b = x, and d = x of v2 mean that each occurrence of
R2 consumes 2 units of A, 1 unit of B and produces 1 unit of D.

The event net in Figure 1A does not establish any dynamics, it
just models the stoichiometry. The dynamics of reactions can be
specified by the intensity net. For instance, the intensity net in
Figure 1B specifies the speed of reaction R1 as twice that of the
concentration of A, see equation r = 2a associated with the
intensity handler s1. In addition to equalities, intensity
handlers can be associated with inequalites to model

uncertainty, e.g., if 1.8a ≤ r ≤ 2.2a was associated with s1 then
the speed of R1 could be any value in the interval [1.8 [A], 2.2 [A]]
where [A] is the concentration of A.

Moreover, several sets of equalities and inequalities can be
associated with the same intensity handler. If this is the case, the
set of inequalities that rules the reaction dynamics is determined by
the concentrations of the system. The intensity net in Figure 1C
associates three different equalities with the intensity handler s2
which imply that the speed of R2 is 0 if [A] is below 10, 2 [B] if [A] is
between 10 and 30, and 4 [B] otherwise. Intensity handler s2 is said to
be guarded, it has three guards (or regions) that can determine the
speed of R2. Guarded handlers can be exploited to approximate non-
linear kinetics of reactions.

The event net (Figure 1A) can be combined with the intensity nets
(Figure 1B and Figure 1C) to produce an FN (Figure 1D) which
models both the stoichiometry and dynamics of the system.

2.2 FNs to Model Constraint-Based Models
A constraint-based model (Varma and Palsson, 1994) can be
expressed as a tuple {R, M, S, L, U} where R is the set of
reactions, M is the set of metabolites, S ∈ R|M|×|R| is the
stoichiometric matrix, and L,U ∈ R|R| are lower and upper
flux bounds of the reactions (notice that very loose flux
bounds can be assigned when no kinetic information is
available). The concentrations of metabolites are usually
disregarded in constraint-based models, being the main focus
of most analyses on the fluxes of reactions. This section shows
how constraint-based models can be expressed graphically and
analyzed numerically in a straightforward way by FNs.

Consider the constraint-based model defined by Table 1. It
consists of four reactions together with their corresponding flux
bounds. The FN in Figure 2 models such a constraint-based
model. The net has one place per metabolite, one transition per
reaction, and one event handler per reaction. The equalities associated
with the event handlersmodel the stoichiometry of the reactions. Since
constraint-based models do not account for the concentrations of
metabolites, the fluxes of reactions cannot depend on concentrations.
Hence, the corresponding FN does not have intensity handlers. The
range of potential fluxes of reactions ismodeled by a parameter λ0 that
is associated with each transition, e.g. λ0 [R1] = 5 in R1 means that the
flux of R1 will always be equal to 5mmol gDW−1h−1, and 0 ≤ λ0 [R2] ≤

FIGURE 1 | (A) Event net modeling the stoichiometry of reactions R1: A →2 C and R22A+ B → D. (B) Intensity net producing a speed in R1 proportional to the
concentration [A]. (C) Guarded intensity net producing a speed in R2 equal to 0 if [A] is below 10, 2 [B] if [A] is between 10 and 30, and 4 [B] otherwise. (D) Flexible net
combining the event net in (A) and the intensity nets in (B) and (C).
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20 in R2 implies that the flux of R2 can be any quantity between 0 and
20mmol gDW−1h−1.

The fluxes of transitions must be non-negative in FNs. Thus,
the modeling of reversible reactions like R3 requires its unfolding
into two reactions, a forward reaction R3f and a backward reaction
R3b with appropriate limits for their parameters λ0 (Júlvez and
Oliver, 2020b). If no λ0 is explicitly associated with a reaction r,
then it is assumed that λ0 [r] = 0. In general, the speed of r is equal
to λ0 [r] plus the intensities provided by the intensity handlers to
which it is connected (see Figure 1B).

FNs can be analyzed by building a set of mathematical constraints
that the state of the systemnecessarily satisfies (Júlvez et al., 2018). The
association of such constraints with an objective function of interest
results in a programming problem whose solution yields a theoretical
optimum. For instance, if the objective function for the FN in Figure 2
is the maximization of the flux of R4 in the steady state, then the
solution of the programming problem would be 10mmol gDW−1h−1

which is the theoretical maximum steady-state flux of R4. In addition
to the flux of R4, fluxes for the rest of reactions are obtained. In this
particular case, this approach is equivalent to performing Flux Balance
Analysis (FBA) Orth et al. (2010) on the constraint-based model.

For the production of citramalate, the constraint-based model of
the organism Escherichia coli strain K-12MG1655 (Webb et al. (2018)
was considered. The model is named iJO1366 in the BiGG repository
database (Orth et al. (2010)) and has 1805metabolites, 2,583 reactions,

and 1,367 genes. The reaction in Eq. 1 was added to this model,
simulating a transgenicE. coli strain capable of synthesizing citramalate.

The transformation of the resulting constraint-based model
into an FN can be carried out by following the approach to obtain
the net in Figure 2. Such an approach is performed automatically
by the cobra2fn module of the Python tool fnyzer (Júlvez and
Oliver, 2020a).

2.3 FNs to Model Bioreactor Dynamics
The macroscopic model of the bioreactor consists of three parts
(see Figure 3) the “Reservoir”, which contains the fresh sterile
medium and supplies the cell culture with the essential nutrients
for cell survival; the “Tank”, where the cell culture is placed, and
the “Effluent” which clears away the accumulated products and
some of the cells in the tank.

The dynamics of the bioreactor variables, which are named
macroscopic variables, are determined by differential
equations (Fernandez-de Cossio-Diaz et al., 2017). The
equation that expresses the evolution of the cell density in
the tank is:

dX
dt

� μ −D( )X (2)

where X (gDWL−1) is the cell density in the tank, μ is the effective
cell growth rate (h−1), andD is the dilution rate (h−1), which is the

TABLE 1 | Simple constraint-based model of four reactions with lower and upper flux bounds (mmol gDW−1h−1). The model is represented graphically by the FN in Figure 2

Reaction Lower bound Upper bound

R1: ∅ → A 5 5
R2: ∅ → C 0 20
R3: A ↔ 2B −500 1,000
R4: B+ C → ∅ 0 1,000

FIGURE 2 | FNmodeling the constraint basedmodel expressed by the reactions in Table 1. The flux bounds of the reactions are modeled by the default intensities
(or speeds) λ0 of transitions. Reversible reactions like R3 are unfolded into a forward and a backward reaction with non-negative flux.
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rate at which culture fluid is replaced divided by the culture
volume.

The evolution of the concentration of a given metabolite, i, in
the tank is given by:

dsi
dt

� ci − si( )D − uiX (3)

where ci is the concentration of the metabolite s in the medium
(mM), si is the concentration of themetabolite in the tank (mM),D is
the dilution rate (h−1), ui is the specific uptake rate of the metabolite
by the cells (mmol gDW−1 h−1), and X is the cell density in the tank
(gDWL−1). If ui> 0 themetabolite is consumed by the cell, otherwise
(ui < 0) the metabolite is secreted from the cell.

For the particular case of a system in which glucose, denoted as
metabolite g, is consumed by an E. coli culture, Eq. 3 for the
concentration of glucose in the tank becomes:

dsg
dt

� cg − sg( )D − ugX (4)

where cg is the concentration of glucose in the supply medium, sg
is the concentration of glucose in the tank and, ug is the glucose
uptake flux by the cell (which is a positive value).

The variation of a given product, e.g., citramalate, denoted as c,
is derived from Eq. 3 as:

dsc
dt

� −scD − ucX (5)

where sc is the citramalate concentration in the tank, and uc is
the citramalate secretion flux. Notice that, since citramalate is
secreted from the cell, uc is negative, and hence, − ucX is a
positive contribution of citramalate to the tank.

The above differential equations can be modeled by FNs.1 For
instance, Eq. 4 can be modeled by the FN in Figure 4 where place

FIGURE 3 | Sketch of a bioreactor in continuous culture mode. The nutrient supply and the removal of toxic and cell products are executed at the same time
uninterruptedly. The three main compartments are: reservoir, tank and effluent.

FIGURE 4 | FN modeling the differential Eq. 4

1For clarity, it is assumed that if the labels and equations of a handler are omitted
(see handlers vgfromtank and vgtocell in Figure 4), then an equality among all the
connected elements holds. For instance if the labels b, c, x and the equation b = c = x
are omitted in v4 in Figure 2, the implicit meaning is that the stoichiometric
weights of all metabolites involved in reaction R4 are 1.
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G accounts of the concentration of glucose in the tank. As
established by Eq. 4, place G has one input flux and two
output fluxes. The input flux comes from the reservoir, it is
modeled by transition tgin, and it is equal to D · cg. As this is a
constant amount, no intensity handlers are needed, and the flux is
modeled by the λ0 associated with tgin. The output flux modeled
by tgfromtank represents the uptake rate of glucose by the cell
culture, and it is equal to ugX where ug is the specific uptake rate
and X is the cell biomass. This flux is produced by the intensity
handler sug. Such an intensity handler scales by X the amount of
glucose that is consumed by the cells, see equation ut = uX
associated with sug. The output flux modeled by tgout represents
the glucose that leaves the tank without being captured by the
cells. Such an output flux is equal to the dilution rate times the
concentration of glucose in the tank, see equation Dsg associated
with sgout: r = Dsg.

Eq. 5 can be modeled similarly by FNs, see place C and the
elements connected to it in Figure 5. In this case, there is one
input flux and one output flux. The input flux comes from the cell
(citramalate is produced by the culture), it is modeled by
transition tct and it is equal to ucX, see equation associated
with hc. The output flux corresponds to the amount of
citramalate in the tank, once it has been released by the cell,
that forms part of the effluent. Such a flux is modeled by tcout and
it is equal to scD, see equation associated with scout.

Finally, Eq. 2 is modeled by the place X and the net elements
connected to it. The input flux of X, i.e. the rate at which X
increases, is modeled by txt and it is equal to the specific growth
rate of the culture times the cell density, rX, see equation
associated with hr. The output flux of X, i.e. the rate at which
X decreases, corresponds to the cells that are cleared away in the
continuous culture, it is modeled by txout and is equal to Dx, see
equation associated with sgout.

2.4 Model Integration
The merger of the FNs that model the dynamics of metabolite
concentrations in the bioreactor, see Section 2.3, and the FNs that
model the constraint-based model of the metabolic network of
the cultured organism, see Section 2.2, results in a single FN that
models the overall production system, see Figure 5. The nutrients
in the medium can be introduced by the transitions located in the
reservoir compartment. In this compartment, as many transitions
as metabolites in the medium are required. For example,
transition tgin accounts for the presence of glucose in the
medium, and transition tsin represents the presence of a given
metabolite s in the medium.

The concentrations of metabolites in the bioreactor are
modeled by the places in the tank compartment. In a general
system, there will be as many places in the tank compartment as
there are metabolites being tracked. In Figure 5, place S
represents a generic nutrient, i.e., it is provided by the
medium, it is consumed by the culture (see arrow going from
S to vst) and forms part of the effluent. On the other hand, place P
represents a generic product, i.e., it is not provided by the
medium, it is produced by the culture (see arrow going from S
to vst) and forms part of the effluent. Although the cell density, X,
is not a metabolite, its evolution, see Eq. 2, can be modeled exactly
as it was a product of the culture, see place X and the net elements
connected to it (the increase of X is due to the biomass production
which is determined by the growth rate).

For the particular system that produces citramalate by a
genetically modified E. coli culture, glucose-limited conditions
are assumed. Thus, in addition to the cell density modeled by
place X with units gDWL−1, the focus will be on the
concentration of one nutrient (glucose which is modeled by
place G with units mM), and the concentration of one product

FIGURE 5 | FN modeling the overall production system by integrating the macroscopic model of the bioreactor and the microscopic model of the constrained-
based model, MODEL1108160000 Orth et al. (2011) of the BioModels database Malik-Sheriff et al. (2020), of the cultured organism.
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(citramalate which is modeled by place C with unitsmM). Recall
that the dynamics of X is ruled by Eq. 2, while G and C are ruled
by Eqs 4 and 5, respectively. The microscopic model,
i.e., constrained-based model, for the citramalate production
system is given by the genome-scale metabolic model of E. coli
strain K-12 (iJO1366), MODEL1108160000 Orth et al. (2011) of
the BioModels database (Malik-Sheriff et al., 2020). This model
was converted to an FN by the fnyzer tool (Júlvez and Oliver,
2020a).

The integration of the macroscopic and the microscopic
models was possible thanks to the elements involved in the
interface between the tank and the cell compartments. The
main elements taking part in this connection are the intensity
handlers hu, hr and hc. These intensity handlers relate the
macroscopic variables of the bioreactor with the exchange
fluxes of the cell in such a way that each macroscopic flux
equals X times the exchange flux of the cell, X being the cell
density in the tank. The equations which model the interface
between the cell and the tank are: ut = ugX, rt = μX, and ct = ucX,
which are associated with the intensity handlers hu, hr and hc,
respectively.

The aforementioned intensity handlers are graphically
located at the interface between the cell and tank
compartments, and each one acts as a bridge between two
transitions: hu connects tGlucose_in and tut, hr connects tgrowth
and txt, and hc connects tExCit and tct. In our model, which
contains all the metabolic reactions of E. coli strain K-12
(iJO1366) combined with the reactions that allow
citramalate production, tGlucose_in represented the glucose
exchange reaction, tgrowth is used for the biomass reaction
and tExCit defined the citramalate exchange reaction.

2.5 Model Optimization
This section discusses the approximations that must be applied to
the FN in Figure 5 prior to its optimization (Subsection 2.5.1), as
well as the type of objective function that is considered
(Subsection 2.5.2).

2.5.1 Tackling Non-linearities
Notice that the equations associated with the intensity
handlers at the interface between the macroscopic model
of the tank and the microscopic model of the cell are not
linear. For instance, the equation associated with hu is ut =
ugX where both ug (the uptake rate of glucose) and X (the cell
density) are real variables. The optimization of a non-linear
system is, in general, very demanding from a computational
point of view. To overcome such a computational burden,
non-linear equations can be approximated by piece-wise
linear inequalities that are associated with intensity
handlers. This approximation results in a guarded FN (see
Section 2.1).

A non-linear equation such as ut = ugX of hu can be
approximated piece-wise linearly by partitioning the state
space of one of the real variables, e.g., X, into a number of
regions and associating a linear inequality with each of the
regions. Thus, hu: ut = ugX can be approximated by:

hu:

Xmin · ug ≤ ut ≤X1 · ug if Xmin ≤X<X1

X1 · ug ≤ ut ≤X2 · ug if X1 ≤X<X2

X2 · ug ≤ ut ≤X3 · ug if X2 ≤X<X3

. . . ,
Xn−1 · ug ≤ ut ≤Xmax · ug if Xn−1 ≤X≤Xmax

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(6)

where Xmin and Xmax are lower and upper bounds for the cell
density, i.e., the cell density is known to be in the
interval [Xmin, Xmax] (notice that these bounds do not need
to be tight).

The above approximation considers n regions, the first
region is active if the cell density X is in the interval [Xmin,
X1] (in general, the ith region is active if the cell density X is in
the interval [Xi−1, Xi]). The values X1, . . . , Xn−1 do not need to
be evenly separated, the only condition they must satisfy is
Xmin < X1 < . . ., < Xn−1 < Xmax. This way, one and only one
region is active at any particular time. The region that is active
determines the linear inequality that is used to produce
intensity, i.e., if region i is active then the intensity
produced by hu can be any value in the interval [Xi−1 · ug,
Xi · ug]. Clearly, the higher the number of regions (and hence,
the smaller the regions), the better the approximation to the
original non-linear equation. Since a higher number of regions
involves a longer run time, there is a trade-off between
accuracy and computational cost. As discussed below, the
number of regions was determined experimentally so that
both the computational burden and the obtained precision
are acceptable.

Notice that the previously defined regions can also be used
to approximate the non-linear equations of the other handlers
in the interface between the macroscopic and microscopic
models because all include X in their equations. Given that
the number of regions has a direct impact on the complexity of
the programming problem which needs to be solved (the
number of binary variables is linear in the number of
regions), partitioning X instead of ug is advantageous from
a computational point of view.

The overall procedure to optimize an FN that integrates a
bioreactor and a metabolic network is outlined in Figure 6. After
integrating both models in a single FN, a set of mathematical
constraints that represent necessary reachability conditions for
the state of the system are derived. Such a set of constraints can be
derived automatically by the Python tool fnyzer (Júlvez and
Oliver, 2020a). The addition of an objective function to the
constraints results in a mixed-integer linear programming
(MILP) problem whose solution represents the theoretical
optimum state that the system can achieve.

In order to speed up the model optimization, a non-guarded
FN has been defined for each of the above regions, and each of
these nets has been solved separately. For instance, region i
determines an FN in which the value of X is constrained to
the interval [Xi−1, Xi] (this constraint will be part of the
programming problem) and the inequalities X2 · ug ≤ ut ≤ X3 ·
ug are associated with hu (similar inequalities are associated with
the rest of handler in the interface). The programming problem
associated with each of these nets is linear, and hence, can be
solved very efficiently. The optimum solution of the original
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guarded FN can be obtained straightforwardly by taking the
maximum of all the computed objective values of the
particular non-guarded FNs.

In order to partition the cell concentration X in an appropriate
number of regions, the productivity on substrate (PS), see
Subsection 2.5.2, was calculated repeatedly for different
number of regions, ranging in the interval [10, 200], and fixed
values of glucose concentration in the medium, 10 gL−1, and
dilution rate, 0.23 h−1. The obtained maximum PS are shown in
Figure 7 and the CPU run-times are reported in Supplementary
Data S3. Notice that after an initial sharp decrease, the
productivity converges to a given value. On the other hand,
the run-time of the simulations increases linearly with the
number of regions (see reported run-times). Based on these

results, it was decided to set the number of regions for the
optimizations to 100, as this number provided a good trade-
off between accuracy and run-time (the run-time to optimize the
FN for a given glucose concentration and a given dilution rate is
564 s (9.4 min), see hardware features in Supplementary
Data S3.

2.5.2 Optimizing the Productivity
Among the different objective functions that can be considered,
we focus on two measures for the productivity of a culture in
continuous mode: 1) volumetric productivity, and 2) productivity
on substrate.

The volumetric productivity, a. k.a. space-time yield, accounts
for the amount of product produced per liter and per hour, it will

FIGURE 6 | Pipeline showing the steps performed to optimize the integrated model. (1) The metabolic model and the bioreactor dynamics are combined to
generate a Flexible Net that integrates the macroscopic (dilution rate, substrate concentration, cell density) and microscopic variables (intracellular metabolite fluxes). (2)
A set of mathematical constraints is derived from the net specification and (3) the objective function is selected. The tool fnyzer performs the generation of amixed-integer
linear programming problem according to the set of constraints and the objective function. (4) Finally, the MILP problem is easily solved by using a solver (e.g.,
CPLEX, Gurobi, GLPK) that computes the mathematical solution.

FIGURE 7 | Theoretical maximum productivity on substrate PS with respect to the number of regions in which the biomass is partitioned. The glucose
concentration is set to 10 g L−1 and the dilution rate to 0.23 h−1.
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be denoted VP and is expressed in grams of product per liter per
hour, i.e., g · L−1 · h−1. In terms of the FN in Figure 5, the
volumetric productivity corresponds to the outgoing flux of
product flux(P), i.e. intensity of transition tpout, expressed in
g · L−1 · h−1. The volumetric productivity would be the
primary concern of a chemical engineer designing an
industrial process, which needs to be both feasible and
economically viable.

The productivity on substrate takes into account both the
specific growth rate of the culture, μ (units h−1), and the product
yield coefficient, YP/S, where YP/S denotes the number of grams of
product that are produced per Gram of substrate fed into the
tank, i.e. YP/S � Product (g)

Substrate (g), and hence YP/S is unitless. In
particular, the productivity on substrate, which will be denoted
PS, for a given net N is defined as:

PS N( ) � μ · YP/S (7)
given that YP/S is unitless, PS(N ) is expressed in h−1. Notice
that Eq. 7 entails a trade-off between biomass formation and
product production. Although the productivity on substrate
is usually a secondary concern, it becomes more relevant as
the cost of the substrate increases with respect to the selling
price of the product. The productivity on substrate is also a
useful metric for a synthetic biologist comparing the
performance of different genetically engineered microbial
strains.

In the following, the mathematical relation between
volumetric productivity and productivity on substrate is
explored. In a continuous culture, the yield YP/S is equal to the
grams of product produced per Gram of substrate per time unit,
i.e. it can be expressed as flux(P)

flux(S) where flux(P) is the flux of
produced product in g · L−1 · h−1, and flux(S) is the flux of
provided substrate in g · L−1 · h−1. Notice that flux(S) is equal to
Dcs where D is the dilution rate in h−1 and cs is the concentration
of the substrate in the fresh medium in g · L−1. This way, the yield
can be expressed as:

YP/S �
flux P( )
flux S( ) �

flux P( )
D · cs (8)

On the other hand, the cell density is assumed to be constant in
a continuous culture, i.e., dXdt � 0, and hence, Eq. 2 implies that μ =
D. Thus, Eq. 7 can be rewritten as:

PS N( ) � μ · YP/S � D · flux P( )
D · cs � flux P( )

cs
� VP N( )

cs
(9)

Thus, the volumetric productivity is equal to the productivity
on substrate times the concentration of substrate in the medium.
Therefore, for a given fixed concentration of substrate in the
medium, cs, optimizing the model to maximize productivity on
substrate is equivalent to optimizing the model to maximize
volumetric productivity. Moreover, for a given cs, the linear
objective function flux(P) can be used to perform such an
optimization. For the particular case of citramalate production,
flux(P) is given by the value of λ[tcout] (see Figure 5), and hence,
the objective function will be the maximization of λ[tcout].

2.5.3 Fermentation Experiments
Continuous cultures were grown in a DASbox® Mini Bioreactor
System (Eppendorf, Stevenage, UK). The E. coli strain used for all
fermentation experiments was BW25113 ΔldhA pET29a-Cer-
BBaJ23119-RFP-cimA3.7. The E. coli ldhA deletion prevents
lactate formation, improving flux towards citramalate (Webb
et al. (2018)). The plasmid contains both the cimA gene, to
enable citramalate production, and the cer gene to reduce loss
of the plasmid through mis-segregation (Green et al. (2018)).
Glucose-limited chemostat cultures (150 ml working volume)
were grown at 37°C, with pH controlled to 7 and dissolved
oxygen to > 30%, in modified MS (Stephens and Dalton
(1987)) medium (2 g L−1 KH2PO4, 2 ml L−1 trace metals
solution (Vishniac and Santer (1957), 0.25 ml L−1 antifoam
polypropylene glycol, 4 g L−1 NH4Cl, 0.4 g L−1 MgSO4.7H2O).
Biomass concentrations were determined by centrifuging
measured samples from the fermenter into pre-weighed tubes,
washing the pellets, and drying to constant weight at 100°C for
48 h. The supernatants from these samples were used to measure
glucose, citramalate, and acetate concentrations. These analyses
were performed using an UltiMate 3000 HPLC system (Thermo
Fisher Scientific, Loughborough, UK) equipped with an Aminex
HPX-87H ion-exclusion column (Bio-Rad, Hertfordshire, UK)
and a RefractoMax520 RI detector (Knauer, Berlin, Germany).
The mobile phase used was 0.1% (v/v) trifluoroacetic acid (TFA)
in Milli-Q water.

3 RESULTS

The validation of the model was carried out by comparing several
simulation runs of the designed FN, see Figure 5, to previously
obtained experimental results. These experiments were carried
out under glucose-limited conditions, using three different
concentrations of glucose in the supplied medium (5, 10 and
50 gL−1), and different dilution rates.

Table 2 reports the numerical results obtained both in vivo,
and in silico by the FN model. The columns of the table are
divided in three parts: the first part sets the experimental
parameters, i.e., the glucose concentration in the medium
and the dilution rate for the glucose-limited continuous
cultures; the second part reports the in vivo experimental
results; and the third part reports the in silico results. For
each pair of experimental parameters (glucose in medium and
dilution rate), the columns corresponding to the “In vivo
results” report the cell density (column “Biomass”), the
concentration of citramalate (column “Citramalate in
tank”), and the concentration of glucose (column “Residual
glucose”) measured in the tank. In order to validate the model,
the concentrations of citramalate and glucose in the tank are
computed for each set of experimental parameters (glucose in
medium and dilution rate) and measured biomass. The
columns corresponding to the “In silico results” report the
computed concentration of citramalate in the tank (column
“Citramalate in tank”), the relative error of such predicted
concentrations with respect to the measured in vivo
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TABLE 2 | Data obtained after running the code that simulates the FN model implementing the experimental conditions and previous results.

Experimental parameters In vivo results In silico results

Glucose in
medium (gL−1)

Dilution
rate (h−1)

Biomass
(gDWL−1)

Citramalate in tank
(in vivo) (gL−1)

Residual glucose
(in vivo) (gL−1)

Citramalate in tank
(in silico) (gL−1)

Citramalate
relative error (%)

Residual glucose
(in silico) (gL−1)

5 0.1 1.88 1.79 0.0 1.32 35.60 0.0
10 0.03 3.22 2.49 0.0 1.87 33.16 0.0
10 0.1 3.41 3.09 0.0 3.46 −10.7 0.0
10 0.17 3.54 3.34 0.0 3.55 −5.92 0.0
10 0.23 3.55 3.32 0.0 3.67 −9.54 0.0
50 0.17 16.32 13.27 0.0 20.75 −36.05 0.0
50 0.23 16.86 13.11 0.0 20.22 −35.16 0.0

FIGURE 8 | Heatmap reporting the maximum volumetric productivities (VPs) for each glucose concentration and dilution rate.
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concentrations (column “Citramalate relative error”), and the
computed concentration of glucose in the tank (column
“Residual glucose”).

For a specific concentration of glucose and dilution rate, the
biomass and the citramalate concentration reached the values
showed in columns “Biomass” and “Citramalate in tank in
vivo” of Table 2. From these results, it can be confirmed that
the higher the concentration of glucose and dilution rate, the
greater the amount of citramalate and biomass that will be
produced.

The results obtained for a set of experiments (column
“Citramalate in tank in vivo”) are consistent with the results
obtained by the simulation of the FN model (column

“Citramalate in tank in silico”) for the production of
citramalate. The most similar outcome occurs when the
glucose concentration was 10 gL−1 as shown in the
“Citramalate relative error” column in Table 2.

Notice that, in all cases, the supplied glucose is used up by
the culture, i.e. the concentration of residual glucose is 0 gL−1

(column “Residual glucose (in vivo)”). This fact is correctly
predicted by the FN model (column “Residual glucose (in
silico)”).

Once the model was validated, it was exploited to estimate the
theoretical maximum productivity (see Subsection 2.5.2) of
citramalate as well as the optimum biomass that produces its
associated productivity.

FIGURE 9 | Heatmap reporting the maximum productivities on substrate (PS) for each glucose concentration and dilution rate.
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The theoretical maximum volumetric productivity (VP) and
productivity on substrate (PS) of citramalate are reported in the
heatmaps in Figure 8 and Figure 9, respectively. The cell densities,
or biomass concentrations, for which the productivity is optimized
are reported in the heatmap in Figure 10. For the explored glucose
concentrations and dilution rates, the highest VP was reached when
the glucose concentration was 11.0 gL−1 and the dilution rate was
0.51 h−1, such a productivity is obtained with a biomass of 3.14 gDW
L−1. With respect to PS, the highest value was obtained for a glucose
concentration of 1.0 gL−1 and a dilution rate of 0.51 h−1, such a
productivity is obtained with a biomass of 0.275 gDW L−1. It is
important to note that the maximum productivities for all
concentrations of glucose are obtained when the dilution rate is

0.51 h−1. As expected, the amount of biomass necessary to maximize
the productivity increases as the dilution rate and the glucose
concentration increase, Figure 10.

The reported in silico results were obtained by fnyzer (Júlvez
and Oliver, 2020a) which transforms the FN in Figure 5 into a
mixed-integer programming problem, and calls the CPLEX
solver (IBM, 2010) to compute the numerical values.

4 DISCUSSION

The mass production of commodity chemicals from fossil fuels
can entail a serious negative impact in the environment. As a

FIGURE 10 | Heatmap reporting the optimum biomass concentrations associated with each of the maximum productivities in Figures 8, 9.
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consequence, alternative approaches are being designed in
order to redirect chemical production to more sustainable
methods. However, the implementation of these novel
approaches at an industrial scale requires optimization
before they can replace traditional methods. To achieve this,
biotechnology needs to exploit the advantages offered by
computational models. Models can provide guidance for the
design of experiments, give insights about the underlying
mechanisms of the system, perform predictions and rule out
infeasible hypotheses. Given the speed at which models can be
simulated and optimized, they can save significant amounts of
time, effort, and money in the wet lab.

In the last 2 decades, different modeling approaches have been
developed, and particular attention has been paid to models of
metabolism. In this work, it has been proven that the modeling
formalism of FNs can integrate genome-scale constraint-based
models, which lack detailed kinetic information, and kinetic
models, which account for the concentration of the
compounds of the system and are expressed as differential
equations. Furthermore, FNs can also accommodate
uncertainties inherent to the model, for example, partially
unknown parameters.

An FN is represented as the combination of two nets: the
event net and the intensity net. The event net models the
stoichiometry, whilst the intensity net models the system
dynamics. Such a graphical representation produces an
overall view of the whole system. The analysis of an FN
relies on the solution of a programming problem derived
from the FN. If all the reaction rates are linear, i.e., the FN
does not have guards, then the resulting programming
problem includes only real variables with linear and
quadratic constraints that can be solved very efficiently. As
a consequence, FNs can handle efficiently genome-scale
metabolic networks whose kinetic information is given by
flux bounds and linear expressions that define the quantity
of metabolites.

In contrast, if the reaction rates are not linear, they need to be
approximated by piecewise linear functions, i.e. a guarded FN,
which results in programming problems with real and binary
variables. The complexity of the algorithms to solve mixed-
integer programming problems is exponential in the number
of binary variables. In order to obtain a balance between
computational burden and accuracy of the model, the number
of regions, and hence the number of binary variables, can be
modified.

In Section 3, it was shown that FNs are a useful tool to predict
the behavior of a complex system, such as a continuous culture in
a bioreactor. The predictions of the citramalate production for a
specific dilution rate and biomass were reliable in comparison to
the experimental results obtained in the in vivo experiments,
especially, the ones in which the glucose concentration in the
medium was 10 gL−1.

Although the simulations were highly predictive, the model
could be improved further by adding some additional
information, such as more components in the culture
medium, or constraining the uptake of glucose depending
on the glucose import rate, and similarly with the

citramalate export rate. Both rates depend on protein
transporters that can be saturated. Furthermore, the
implementation of omics data could improve the model as
well (Sánchez et al., 2017).

Not only was this method useful to reproduce the results of
the in vivo experiments, but it can also help guide these
experiments and optimize the conditions without wasting
time and resources. The optimization performed in Section
3 showed that it is of special interest to explore in vivo the
conditions that maximized the productivity in the
computational simulations.
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Supplementary Data | 1. Maximum_Productivities.xlsx: This
spreadsheet reports the computed theoretical maximum productivities
and their associated cell densities for dilution rates ranging in the interval
[0.01, 0.81] h−1 and glucose concentrations in the medium ranging in the
interval [1, 11] gL−1.

2. EcolicitFN.xlsx: This spreadsheet reports the fluxes and
concentrations for a system with dilution rate D = 0.25 h−1, glucose
concentration in the medium glc = 7.0 gL−1 and cell density X = 0.5

gDWL−1. For clarity, only positive fluxes are reported and reactions with null
flux are omitted.

3. Regions_and_Runtime.xlsx: This spreadsheet reports the maximum
productivity on substrate (PS), optimum biomass, and run-time for a
dilution rate of 0.23 h−1, a glucose concentration of 10 gL−1, and a
number of regions in the interval [10, 200]. All the simulation results
were obtained on a 4 x Intel i5-7200 CPU, 2.50 GHz running Ubuntu
19.10 with 7.7 GB of RAM.
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