22,672 research outputs found

    Euclidean-Minkowskian duality of Wilson-loop correlation functions

    Full text link
    We discuss the analyticity properties of the Wilson--loop correlation functions relevant to the problem of soft high-energy scattering, directly at the level of the functional integral, in a genuinely nonperturbative way.Comment: 12 pages, 1 figure. To appear in the proceedings of the Tenth Workshop on Non-Perturbative Quantum Chromodynamics, Paris, France, 8-12th June 200

    Elastic anomalies in glasses: the string theory understanding in the case of Glycerol and Silica

    Full text link
    We present an implementation of the analytical string theory recently applied to the description of glasses. These are modeled as continuum media with embedded elastic string heterogeneities, randomly located and randomly oriented, which oscillate around a straight equilibrium position with a fundamental frequency depending on their length. The existence of a length distribution reflects then in a distribution of oscillation frequencies which is responsible for the Boson Peak in the glass density of states. Previously, it has been shown that such a description can account for the elastic anomalies reported at frequencies comparable with the Boson Peak. Here we start from the generalized hydrodynamics to determine the dynamic correlation function S(k,ω)S(k,\omega) associated with the coherent, dispersive and attenuated, sound waves resulting from a sound-string interference. Once the vibrational density of states has been measured, we can use it for univocally fixing the string length distribution inherent to a given glass. The density-density correlation function obtained using such distribution is strongly constrained, and able to account for the experimental data collected on two prototypical glasses: glycerol and silica. The obtained string length distribution is compatible with the typical size of elastic heterogeneities previously reported for silica and supercooled liquids, and the atomic motion associated to the string dynamics is consistent with the soft modes recently identified in large scale numerical simulations as non-phonon modes responsible for the Boson Peak. The theory is thus in agreement with the most recent advances in the understanding of the glass specific dynamics and offers an appealing simple understanding of the microscopic origin of the latter, while raising new questions on the universality or material-specificity of the string distribution properties.Comment: 15 pages, 8 figure

    A Geometric Monte Carlo Algorithm for the Antiferromagnetic Ising model with "Topological" Term at θ=π\theta=\pi

    Get PDF
    In this work we study the two and three-dimensional antiferromagnetic Ising model with an imaginary magnetic field iθi\theta at θ=π\theta=\pi. In order to perform numerical simulations of the system we introduce a new geometric algorithm not affected by the sign problem. Our results for the 2D2D model are in agreement with the analytical solutions. We also present new results for the 3D3D model which are qualitatively in agreement with mean-field predictions
    corecore