145 research outputs found

    Complex Spontaneous Flows and Concentration Banding in Active Polar Films

    Get PDF
    We study the dynamical properties of active polar liquid crystalline films. Like active nematic films, active polar films undergo a dynamical transitions to spontaneously flowing steady-states. Spontaneous flow in polar fluids is, however, always accompanied by strong concentration inhomogeneities or "banding" not seen in nematics. In addition, a spectacular property unique to polar active films is their ability to generate spontaneously oscillating and banded flows even at low activity. The oscillatory flows become increasingly complicated for strong polarity.Comment: 4 pages, 3 figure

    Sheared active fluids: thickening, thinning and vanishing viscosity

    Get PDF
    We analyze the behavior of a suspension of active polar particles under shear. In the absence of external forces, orientationally ordered active particles are known to exhibit a transition to a state of non-uniform polarization and spontaneous flow. Such a transition results from the interplay between elastic stresses, due to the liquid crystallinity of the suspension, and internal active stresses. In the presence of an external shear we find an extremely rich variety of phenomena, including an effective reduction (increase) in the apparent viscosity depending on the nature of the active stresses and the flow-alignment property of the particles, as well as more exotic behaviors such as a non-monotonic stress/strain-rate relation and yield stress for large activities.Comment: 10 pages, 10 figure

    Excitable Patterns in Active Nematics

    Get PDF
    We analyze a model of mutually-propelled filaments suspended in a two-dimensional solvent. The system undergoes a mean-field isotropic-nematic transition for large enough filament concentrations and the nematic order parameter is allowed to vary in space and time. We show that the interplay between non-uniform nematic order, activity and flow results in spatially modulated relaxation oscillations, similar to those seen in excitable media. In this regime the dynamics consists of nearly stationary periods separated by "bursts" of activity in which the system is elastically distorted and solvent is pumped throughout. At even higher activity the dynamics becomes chaotic.Comment: 4 pages, 4 figure

    Crystalline Order On Riemannian Manifolds With Variable Gaussian Curvature And Boundary

    Get PDF
    We investigate the zero temperature structure of a crystalline monolayer constrained to lie on a two-dimensional Riemannian manifold with variable Gaussian curvature and boundary. A full analytical treatment is presented for the case of a paraboloid of revolution. Using the geometrical theory of topological defects in a continuum elastic background we find that the presence of a variable Gaussian curvature, combined with the additional constraint of a boundary, gives rise to a rich variety of phenomena beyond that known for spherical crystals. We also provide a numerical analysis of a system of classical particles interacting via a Coulomb potential on the surface of a paraboloid.Comment: 12 pages, 8 figure

    A robotic crawler exploiting directional frictional interactions: Experiments, numerics and derivation of a reduced model

    Get PDF
    We present experimental and numerical results for a model crawler which is able to extract net positional changes fromreciprocal shape changes, i.e. 'breathinglike' deformations, thanks to directional, frictional interactions with a textured solid substrate, mediated by flexible inclined feet. We also present a simple reduced model that captures the essential features of the kinematics and energetics of the gait, and compare its predictions with the results from experiments and from numerical simulations

    A new class of large-amplitude radial-mode hot subdwarf pulsators

    Full text link
    Using high-cadence observations from the Zwicky Transient Facility at low Galactic latitudes, we have discovered a new class of pulsating, hot compact stars. We have found four candidates, exhibiting blue colors (g − r ≤ −0.1 mag), pulsation amplitudes of >5%, and pulsation periods of 200–475 s. Fourier transforms of the light curves show only one dominant frequency. Phase-resolved spectroscopy for three objects reveals significant radial velocity, T eff, and log(g) variations over the pulsation cycle, which are consistent with large-amplitude radial oscillations. The mean T eff and log(g) for these stars are consistent with hot subdwarf B (sdB) effective temperatures and surface gravities. We calculate evolutionary tracks using MESA and adiabatic pulsations using GYRE for low-mass, helium-core pre-white dwarfs (pre-WDs) and low-mass helium-burning stars. Comparison of low-order radial oscillation mode periods with the observed pulsation periods show better agreement with the pre-WD models. Therefore, we suggest that these new pulsators and blue large-amplitude pulsators (BLAPs) could be members of the same class of pulsators, composed of young ≈0.25–0.35 M ⊙ helium-core pre-WDs.Published versio

    Ribbon Crystals

    Get PDF
    A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We give a general description of developable ribbons using a ruled procedure where ribbons are uniquely described by two generating functions. This construction defines a differentiable frame, the ribbon frame, which does not have singular points, whereby we avoid the shortcomings of the Frenet-Serret frame. The observed spontaneous pattern is modeled using planar triangles and cylindrical arcs, and the ribbon structure is shown to arise from a maximization of the end-to-end length of the ribbon, i.e. from an optimal use of ribbon length. The phenomenon is discussed in the perspectives of incompatible intrinsic geometries and of the emergence of long-range order

    Exploring the long-term associations between adolescents’ music training and academic achievement

    Get PDF
    There is a positive relationship between learning music and academic achievement, although doubts remain regarding the mechanisms underlying this association. This research analyses the academic performance of music and non-music students from seventh to ninth grade. The study controls for socioeconomic status, intelligence, motivation and prior academic achievement. Data were collected from 110 adolescents at two time points, once when the students were between 11 and 14 years old in the seventh grade, and again 3 years later. Our results show that music students perform better academically than non-music students in the seventh grade (Cohen’s d = 0.88) and in the ninth grade (Cohen’s d = 1.05). This difference is particularly evident in their scores in Portuguese language and natural science; the difference is somewhat weaker in history and geography scores, and is least pronounced in mathematics and English scores (η2p from .09 to .21). A longitudinal analysis also revealed better academic performance by music students after controlling for prior academic achievement (η2p = .07). Furthermore, controlling for intelligence, socioeconomic status and motivation did not eliminate the positive association between music learning from the seventh to the ninth grade and students’ academic achievement (η2p = .06). During the period, music students maintained better and more consistent academic standing. We conclude that, after controlling for intelligence, socioeconomic status and motivation, music training is positively associated with academic achievement.This research was funded by the Portuguese National Funding Agency for Science, Research and Technology (FCT - Fundacao para a Ciencia e a Tecnologia)

    Periodic boundary conditions on the pseudosphere

    Full text link
    We provide a framework to build periodic boundary conditions on the pseudosphere (or hyperbolic plane), the infinite two-dimensional Riemannian space of constant negative curvature. Starting from the common case of periodic boundary conditions in the Euclidean plane, we introduce all the needed mathematical notions and sketch a classification of periodic boundary conditions on the hyperbolic plane. We stress the possible applications in statistical mechanics for studying the bulk behavior of physical systems and we illustrate how to implement such periodic boundary conditions in two examples, the dynamics of particles on the pseudosphere and the study of classical spins on hyperbolic lattices.Comment: 30 pages, minor corrections, accepted to J. Phys.
    • …
    corecore