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We present experimental and numerical results for a
model crawler which is able to extract net positional
changes from reciprocal shape changes, i.e. ‘breathing-
like’ deformations, thanks to directional, frictional
interactions with a textured solid substrate, mediated
by flexible inclined feet. We also present a simple
reduced model that captures the essential features of
the kinematics and energetics of the gait, and compare
its predictions with the results from experiments and
from numerical simulations.

1. Introduction
The mechanics of locomotion at small scales is receiving
increasing attention in the recent literature. This is
due both to the intrinsic interest in the detailed
understanding of the locomotion strategies of small
biological organisms [1,2] and in the interest in
reproducing them in artificial, bioinspired artefacts [3,4].
Depending on whether self-propulsion forces arise from
the mechanical interactions of the locomotor with a
surrounding fluid, or with a solid substrate, motility
occurs by either swimming or crawling, and these are the
main motility modes at microscopic scales [5].

The study of crawling at microscopic scales is often
motivated by the interest in cell motility and spreading
[6,7]. In another stream of research, limbless locomotion
has attracted interest as a new paradigm for robotic
locomotion in very rough and complex environments
or on uneven terrains [3,8,9]. Besides the engineering
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Figure 1. A sketch of the model bristle-crawler analysed in this study. The system comprises an initially horizontal body of
current length l(t) and massm, interacting with a groove-textured substrate by means of two inclined, flexible bristles. Owing
to the inclination of the elastic bristles, the frictional interaction arising at the crawler/substrate interface is directional in nature.
Note that the system is externally subject only to vertical gravitational loads. (Online version in colour.)

interest in view of the possible technological applications (rescue robotics, industrial inspection,
medical endoscopy), the comparison of the behaviour of biological organisms with robotic
replicas is particularly fruitful in that it promotes a synthetic, functionalist view of biological and
bioinspired motility, in which the essential necessary ingredients can be identified, and the way
they interact can be studied in detail [10–12].

One of the themes that emerges naturally from the studies above is the identification of the
mechanisms of minimal complexity that are able to produce non-zero net displacements by
exploiting periodic shape changes. In swimming micromotility, when the size of the swimmer
is sufficiently small and the induced flows are characterized by low Reynolds numbers (Re), net
displacements can be obtained only through non-reciprocal shape changes. This fact is known as
the Scallop theorem in the microswimming literature [13]. A geometrical view emphasizing how
the key to self-propulsion for low Re swimmers resides in performing closed loops in the space of
shapes is discussed in [14–19], pursuing ideas pioneered in [20].

In fact, we have shown in recent work that many ideas emerged in the context of low Re
swimmers can be useful also in the crawling setting [21–23]. A question that is particularly
intriguing is whether, by exploiting sufficiently nonlinear interactions with a substrate one may
beat the Scallop theorem, and achieve non-zero net displacement for a locomotor that can only
change shape in a reciprocal manner, through breathing-like deformations. Such deformations
are represented by an open curve in the space of shapes, travelled forward and backward. While
such shape changes produce zero net displacements in low Re swimming, this is no longer the
case for crawlers on solid substrates, provided that the frictional interactions with the substrate
are ‘directional’ [24]. By this, we mean interactions such that the force–velocity relation is not
odd. Surface directionality is common in nature, and in fact, it provides specific functions for
the survival of many species in the plant and animal kingdoms, see for instance the review on
bioinspired textured surfaces in reference [25]. A detailed theoretical study of the motion of model
crawlers exploiting distributed, directional interactions is contained in reference [26], whereas the
first example of a self-oscillating gel, driven by the Belouzov–Zhabotinsky reaction and crawling
on a textured surface, is reported in earlier studies [27–29].

The goal of this paper was to show how a crawler exploiting directional interactions can be
realized in practice, and how a simple model of the type studied in reference [26] can be adequate
to analyse its behaviour, resolving in a satisfactory way both the kinematics of the gait and its
energetics.

In this study, we shall consider the prototypical bristle-crawler shown in figure 1. Bristle-robots
have already been used in the past as model systems [21,30]. The system comprises an initially
horizontal segment of current length l(t) and mass m, interacting with a groove-textured surface
by means of two inclined, flexible bristles. The inclination of the bristles by the angle α gives
rise to directional frictional interactions, such that reciprocal length changes of the crawler body
lead to its advancement on the substrate. Ours is only one of the possible choices to produce
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an effective frictional interaction with a force–velocity relation that is not odd. For example, one
could texture the crawler instead of the substrate, and many alternative designs can be pursued
based, for instance, on the bioinspired surfaces reviewed in reference [25].

In the following, we explore the crawler’s motility both via direct experimentation and via
finite-element computations. These analyses will lead to the definition of a simplified, one-
dimensional model capable of resolving both the kinematics and the energetics of the system
being analysed.

The focus of our paper is on the net displacements that can be extracted from the most
elementary form of cyclic shape changes, namely reciprocal breathing-like deformations. Previous
studies in the literature had mostly focused on peristaltic locomotion, where shape changes
consist in travelling waves of extension or contraction [2,8,9], a mechanism requiring a much more
sophisticated level of spatio-temporal coordination. However, we share with these studies the
interest in clarifying the basic aspects in the modelling of frictional interactions with a substrate,
a necessary preliminary step on the way to obtain reliable models for the design of self-propelled
microrobots, bioinspired by the crawling motility of invertebrate organisms.

2. Experimental analysis of the bristle-crawler
Here, we begin the analysis of the bristle-crawler sketched in figure 1 by direct experimentation.
The experimental setting employed in the study is shown in figure 2. It comprises a prototype of
the robotic crawler, positioned on a groove-textured substrate and actuated by means of a shape–
memory–alloy (SMA) spring, an array of three fans, employed to enhance the convective cooling
of the actuating coil and the control/acquisition electronics.

All the components of the crawler’s body were obtained using a EGX-600 CNC machine
from Roland Corporation to engrave a 10 mm thick plate of transparent PMMA, whereas the
supports for the flexible bristles were realized with a 3DS Project 3510 HD printer to provide an
inclination of α = π/4.1 Similarly, a mould was three-dimensionally printed for the preparation of
the flexible bristles with a Shore A 40 silicone rubber. A tapered shape was chosen for the bristles
in order to ensure interlocking between their tips and the substrate grooves: the cross section of
30 × 3 mm at the bristle clamp linearly decreases to a cross section of 30 × 0.5 mm at the bristle
tip, for an overall length of 5 mm. Specifically, see figure 2b,c, the prototype crawler, of overall
mass 55 g and distance between the bristles 100 mm, was designed symmetric about the anterior–
posterior vertical plane, and each of its sides simply comprises two segments sliding side by side
to provide a maximum shortening s̃ = 20 mm via the resistive heating of the SMA actuator. The
preparation of the textured substrate also required the use of the CNC machine to engrave evenly
spaced rectangular symmetric grooves 1 mm wide and 0.25 mm deep in a 3 mm thick plate of
white PMMA.

For the actuation of the robotic crawler, an SMA tension spring was chosen as a lightweight
and compact solution. This was purchased from Jameco Electronics and comprises 20 active coils
with an outer diameter of 6 mm and a wire diameter of 0.75 mm. Its connection to the crawler
body was achieved by means of two ending hooks. The shortening mechanism of the crawler was
designed in such a way that its contraction implies the extension of two rubber bands, which act
as antagonist, restoring elements for the SMA spring.

Each trial was carried out at room temperature (22◦C) and with the three fans (from Jamicon
Electronics, model JF0925-1UR) running at 3500 rpm. The displacement at the left and right
ends of the crawler was measured with two triangulation, non-contact laser transducers (from
Kyence, model IL-300) simultaneously sampled at a rate of 100 S s−1 via a cRIO-9082 from
National Instruments endowed with a NI-9215 AI module. This allowed for the determination
of the crawler position, namely the displacement of its right-hand side �(t), as a function of its
shortening s(t). The acquired shortening s(t) was also exploited as feedback for a closed-loop

1In this study, we focus on the significance of directional interactions to crawling motility; a detailed analysis of the sensitivity
of crawling performance to the number and inclination of the bristles is currently being performed and will be the subject of
a forthcoming paper.
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Figure 2. The practical realization of the bristle-crawler analysed in this study. A global view of the experimental setting is
reported in (a), whereas (b) and (c) are closer side views of the prototype crawler. Note the SMA spring employed as actuator
and the elastic rubber bands acting as antagonist, restoring elements. The length of the crawler, taken as the distance between
the two bristles, is of 100 mm for an overall mass of 55 g, whereas the available shortening provided by the sliding mechanism
is s̃= 20 mm. (Online version in colour.)

control implemented on the FPGA of the cRIO-9082. In fact, at the beginning of each test an
electric current of 3.5 A was delivered to the SMA actuator through two tiny and flexible cables
connected to a home-made amplifier, operating in commutation mode and controlled by a NI-
9472 DO module, while monitoring the crawler shortening. When the shortening s(t) attained the
peak value of 20 mm, the delivery of electric current was stopped by the control loop, allowing
the robotic crawler to re-extend, thanks to the convective cooling provided by the fans. Again,
the shortening s(t) was monitored, and no current was delivered to the actuator until the crawler
returned to its original length. This cycle was repeated at least five times during each trial, and
any individual stretching cycle approximately required a time of 20 s.

The experimental analysis of the bristle-crawler allowed for the precise determination of its
motile behaviour. During each trial we observed, as expected, a rightwards motion of the system,
with the two bristles sliding at different times in the direction of less resistance (i.e. ‘along
the grain’ of the texture). This is also clearly visible from the movie provided in the electronic
supplementary material (part I), which was taken with a digital camera EOS 6D from Canon,
equipped with a EF 24–105 mm 1 : 4 L IS USM objective. In particular, the movie in the electronic
supplementary material shows the results of two distinct trials, carried out for an inclination α of
the bristles of π/4 and 0, respectively. The second trial, with vertical bristles, was performed in
order to experimentally prove the significance of the bristles inclination to directional interactions.
In fact, for α = 0, the motion of the system is characterized by almost symmetric oscillations about
its middle point, so that no appreciable net advancement was observed during the test.

The crawler’s advancement, namely the displacement �(t) of its right-hand side, is shown in
figure 3 as a function of the shortening s(t). In particular, five stretching cycles are reported and
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crawler motion: experimental results

Figure 3. Displacement of the right-hand side of the crawler�(t) as a function of its shortening 0≤ s(t)≤ s̃. Five stretching
cycles are reported, corresponding to a net advancement of approximately 82 mm. Note the changes in the slope of the diagram
along the contraction and re-extension branches. These are due to the transitions between the stick and slip regimes of the two
bristles. The advancement for each cycle is approximately 82% of the available shortening of 20 mm, a fact arising from the
flexibility of the bristles.

these are highlighted in the figure. We note that the net advancement arising from the five cycles
approximately equals 82 mm, and this is also the mean value measured from the experiments
with a deviation of ±1 mm. Thus, the advancement arising from each stretching cycle is always
smaller than the maximum available shortening of 20 mm. The inspection of figure 3, together
with the snapshots in figure 4, provides a rather clear explanation for that. In fact, during each
cycle, the crawler experiences two distinct regimes, related to a stick–slip behaviour of the bristles.
During contraction, the two bristles initially deform elastically and their tips are at rest (the two
bristles stick). Upon attainment of a critical shortening, the left bristle slides rightwards, whereas
the other one keeps its position (slip of the left bristle and stick of the right one). Likewise, during
re-extension, the two bristles are first elastically deformed in the opposite direction with their tips
at rest (stick of the two bristles), and then the right bristle slides rightwards, whereas the other
one keeps again its position (stick of the left bristle and slip of the right one). It turns out that
the flexibility of the two bristles which mediate the interaction with the substrate significantly
affects the crawler motility. Indeed, a part of the available shortening is spent in each cycle, both
during contraction and re-extension, to bend elastically the bristles before sliding of their tips can
take place.

The two regimes experienced by the crawler can be easily detected from the results of figure 3,
where the transition between stick and slip of the bristles typically corresponds to an evident
change in the slope of the diagram along the contraction and re-extension branches. This is less
visible during the first contraction due to the fact that, at the beginning of the test, the two bristles
are almost unloaded and subject only to vertical, gravitational forces, whereas, at the beginning
of all the following branches, the two bristles are always in a state of horizontal pre-loading.

Snapshots of the crawler position during a typical test are reported in figure 4. Specifically,
five stretching cycles are shown for direct comparison with figure 3 and, for each cycle, the initial
configuration of the crawler is reported together with the two configurations after a contraction
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Figure 4. Snapshots of the robotic crawler performing five stretching cycles. For each cycle, the initial configuration of the
crawler is reported together with the two configurations after a contraction by s̃ and after the re-extension to the original
length. Note that vertical, dashed lines are drawn to highlight the displacement of the left and right extremities of the crawler’s
body. The last picture of each cycle is repeated for clarity as the first one of the following cycle. (Online version in colour.)

by s̃ and after the re-extension to the original length. Note that vertical, dashed lines are drawn
to highlight the displacement of the left and right extremities of the crawler’s body, whereas the
last picture of each cycle is repeated for clarity as the first one of the following cycle. Inspection of
the deformed shapes of figure 4 sheds light on the motile behaviour of the robotic crawler: the net
advancement is achieved by a sequence of stick–slip events for the flexible bristles, with horizontal
displacements much larger than the vertical ones. In the following, see §4, we shall exploit these
observations for the definition of an effective, one-dimensional model for crawling motility.

3. Finite-element computations
The experimental analysis of the bristle-crawler allowed for the determination of the key
mechanisms behind its kinematics. We extend now our study via numerical computations, by
setting a finite-element model capable of reproducing all the features of the crawler’s motility
that were observed during direct experimentation. We will use the results from the finite-element
computations to quantify the forces and the energetics of the model system under investigation.

The commercial software ABAQUS Standard 6.13-2 was employed to run the analyses.
Specifically, the crawler body was modelled as a horizontal connector of type CONN2D2 with
initial length of 100 mm, whereas the elastic bristles were modelled with two-nodes B21 beam
elements. Their tapered shape was taken into account and, to this purpose, each bristle was
discretized by means of 100 finite-elements of variable cross section for an overall length of 5 mm.
With respect to the material properties, a Young’s modulus of 1.1 MPa, a Poisson’s ratio of 0.45
and a mass density of 1.3 g cm−3 were chosen for the Shore A 40 silicone rubber, and viscous
dissipation was accounted for by means of Rayleigh mass-proportional damping corresponding
to a damping ratio of 0.15 at the first resonant frequency. The flexible bristles were fixed to
the crawler’s body by means of rigid, vertical links ending at the extremities of the horizontal
connector, where two point masses of 27.5 g each were also attached to account for the overall
inertia of the system (these are depicted as black spots in figure 6, where also the discretization
described above can be recognized). The textured substrate was introduced in the model as
an analytical rigid surface, resembling the precise geometry employed in the experiments, and
Coulomb dry friction was assumed at the contact between the bristles and the rigid surface.
Remarkable agreement between the numerical predictions and the experimental results was
obtained for a friction coefficient of 0.65, consistently with the properties of the two materials
in contact.
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crawler motion: finite-element results

Figure 5. Displacement of the right end of the crawler�(t) as a function of its shortening 0≤ s(t)≤ s̃. Five stretching cycles
are reported, corresponding to a net advancement in line with the experimental measures (figure 3). Note the small-amplitude
oscillations in the advancement arising from the elasticity of the bristles and the discrete nature of the interaction between the
bristles and the substrate. Just as in the experiments, the advancement in each cycle is smaller than the available shortening of
20 mm, a fact arising from the flexibility of the bristles.

Each finite-element analysis comprised two steps and both were run in a nonlinear, large
deformation framework taking into account inertial effects. The crawler, positioned on the
textured surface, was first subjected to vertical gravitational loads (step 1), and then periodic
shape changes were prescribed to the horizontal connector by means of a user subroutine DISP
(step 2), with imposed shortening s(t) = s̃ sin2(π t/T), with a peak value s̃ = 20 mm and a period
T = 20 s.

As a first numerical result, we show in figure 5 the crawler’s advancement �(t) as a function of
its shortening s(t) for an inclination of the bristles α = π/4. In particular, five stretching cycles are
reported, as highlighted in figure 5, such that a direct comparison with the experimental results of
figure 3 is feasible. A remarkable agreement was found for the set of material parameters reported
above and, in fact, the finite-element model well captures all the features of the crawler gait. Small-
amplitude oscillations in the advancement �(t) are visible along the branches of the graph, and
these arise from the elastic deformability of the bristles loaded by oscillating forces owing to the
discrete nature of the interaction between bristle tips and textured surface.

The finite-element analyses were run accounting for the inertia of the system, but it seems
reasonable, both from the experiments and the numerical computations, to conclude that for the
prescribed time history of shape changes the crawler’s gait falls within the quasi-static regime.
We shall exploit this observation in §4.

Deformed shapes of the crawler are reported in figure 6, and these were extracted from the
numerical simulations. Again, five stretching cycles are reported, and remarkable agreement is
found with the experimental snapshots of figure 4, a fact that further validates the adequacy of
the proposed model to capture the gait of the crawler. The crawler’s motion is also reported in the
movie provided in the electronic supplementary material (part II), which shows the results from
two distinct computations as obtained for an inclination of the bristles of α = π/4 and α = 0.

The computational results reported in figures 5 and 6 mainly concern the kinematics of the
system under investigation. However, in this study, we are also interested in exploring the energy
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Figure 6. Deformed shapes of the robotic crawler performing five stretching cycles. For each cycle, the initial configuration of
the crawler is reported together with the two configurations after a contraction by s̃ and after the re-extension to the original
length. Note that vertical, dashed lines are drawn to highlight the displacement of the left- and right-hand side of the crawler’s
body. The last picture of each cycle is repeated for clarity as the first one of the following cycle. (Online version in colour.)

cost related to crawling motility, and this is feasible by computing the forces experienced by the
connector while performing periodic shape changes. To this aim, results were extracted from
the numerical computations and are summarized in figure 7 for the interesting case of α = π/4.
In particular, we report in figure 7a the time history of the force Fc(t) experienced by the axial
connector during five stretching cycles, corresponding to an overall time of 100 s. Likewise, the
work Wc(t) expended by the connector during those stretching cycles is shown in figure 7b. The
inspection of these results reveals the oscillatory, irregular nature of the frictional interaction
arising at the crawler/substrate interface, and allows for a precise evaluation of the energetics
associated with crawling motility in the context of directional interactions. As anticipated, we
shall employ the experimental observations on the crawler gait and the computational results
related to the energetics of crawling in the formulation of an effective, one-dimensional model.

4. A one-dimensional model for the bristle-crawler
In the previous sections, locomotion of the bristle-crawler has been extensively investigated both
by means of experiments on a small-scale prototype and via detailed finite-element computations.
The analysis of those results, in particular of the deformed shapes shown in figures 4 and 6,
reveals that the kinematics of the system essentially comprises horizontal displacements. In fact,
the crawler shortening s̃ much exceeds the vertical displacements, which only arise from the
inflection of the bristles and from their adaptation to the irregularities of the substrate.

In this study, directional interactions have been achieved through the sliding of inclined
bristles on a groove-textured substrate. The question arises whether such interactions can be
suitably modelled by means of an effective force–velocity law. In view of the results discussed
in the previous sections, a natural starting point is the following one-dimensional law:

Fi(t) =

⎧⎪⎪⎨
⎪⎪⎩

Fn if ẋi(t) < 0,

F̃ ∈ [−Fp, Fn] if ẋi(t) = 0,

−Fp if ẋi(t) > 0,

(4.1)

where Fi(t) is the horizontal force acting on the ith bristle tip, function of its sliding velocity ẋi(t)
and of the non-negative parameters Fp and Fn, see also figure 8. In equation (4.1), the subscript
i = {1, 2}, whereas the two parameters Fp and Fn correspond to the average frictional forces acting
on the bristle while sliding along the grain or against it, respectively. Note that, owing to the
inclination of the two bristles by the angle α, Fn always exceeds Fp.
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Figure 7. Computed force Fc(t) acting on the horizontal connector (a) andwork performed by the connectorWc(t) during cyclic
shape changes (b). Note that five cycles are reported, corresponding to an overall time of 100 s for the analysis. The time interval
for the first stretching cycle is highlighted.

ẋi(t)
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−Fp

Figure 8. A representation of the directional force–velocity law employed in this study. Owing to the inclination of the bristles
Fn > Fp, where the higher friction corresponds to negative sliding velocities. (Online version in colour.)

It turns out that a simplified, one-dimensional model can be set for the bristle-crawler. This
is shown in figure 9, where the crawler’s body is depicted with a horizontal segment of current
length l(t). The two bristles are modelled as vertical, rigid links and their compliance is accounted
for by means of two linear springs of stiffness k and unloaded length δ0, so that the tips of the
bristles (denoted by tiny solid triangles) are given an initial horizontal offset with respect to the
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x
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k k

x1(t) x2(t)

d1 (t) d2 (t)

l (t)

F1(t) F2(t)

Figure 9. A sketch of the one-dimensional model for the bristle-crawler. Themodel accounts only for horizontal displacement,
and the two points x1(t) and x2(t) are subjected to frictional, horizontal forces as given by the law of equation (4.1), see also
figure 8. (Online version in colour.)

crawler extremities. Frictional, directional interactions between the substrate and the bristles are
described by equation (4.1).

We extend now our approach to quasi-static crawling [21–23,26] by considering T-periodic,
reciprocal shape changes of the system shown in figure 9, such that its length first monotonically
decreases from the initial value of L to L − s̃, and then monotonically increases from L − s̃ to L. At
any instant t, the configuration of the system is known upon determination of the two coordinates
xi(t) and of the two lengths δi(t), with i = {1, 2}. The compatibility of the displacements requires
that

x2(t) + δ2(t) = x1(t) + δ1(t) + l(t), (4.2)

whereas the balance of the horizontal forces acting on the crawler simply reads

F1(t) + F2(t) = 0. (4.3)

Because the forces Fi(t) are transmitted to the crawler body by the elastic springs, we can set

Fi(t) = −k[δi(t) − δ0], (4.4)

and force balance provides the following relation between their lengths

δ2(t) = 2δ0 − δ1(t). (4.5)

The frictional law employed in this study requires the forces Fi(t) to attain a constant
yield value in order for sliding to occur, such that the problem under consideration possesses
similarities with the constitutive theory for elastic, ideally plastic solids [31] and can be
conveniently approached in rate form. A similar approach has also been used to model the
motion of capillary drops on rough substrates, see [32,33]. Direct substitution of equation (4.5)
into equation (4.2) and time differentiation yields

ẋ2(t) = ẋ1(t) + 2δ̇1(t) + l̇(t), (4.6)

an equation that can be integrated by splitting the stretching cycle in distinct stages. Furthermore,
note that, in view of the restriction Fn > Fp, force balance dictates sliding to occur by a positive
velocity and at one bristle tip at most, so that, while sliding, the crawler is subjected to two
balanced forces of modulus Fp.

(a) Stage a: t ∈ [0, ta) and |Fi(t)| < Fp.
We assume the crawler to be unloaded in its initial configuration, where Fi(0) = 0 and δi(0) = δ0.
We further take x1(0) = 0 and x2(0) = L as initial conditions. Hence, by setting ẋ1(t) = ẋ2(t) = 0 in
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equation (4.6). we immediately obtain

δ̇1(t) = − l̇(t)
2

, (4.7)

which, upon time integration and substitution into equation (4.4), provides the expressions of the
two balanced forces as

F1(t) = −F2(t) = − k[L − l(t)]
2

= − ks(t)
2

, (4.8)

where the shortening at time t has been introduced as s(t) = L − l(t). Note that F1 < 0 and F2 > 0,
so that equation (4.8) holds as long as F1 > −Fp. Therefore, at time t = ta the onset of sliding takes
place at the tip of the left bristle for

s(ta) = 2Fp

k
. (4.9)

Upon definition of �(t) = x2(t) + δ2(t) − L − δ0, we obtain from the equations above the
expression for the displacement of the right-hand side of the crawler, namely

�1
a(t) = − s(t)

2
≥ −Fp

k
, (4.10)

with the superscript ‘1’ denoting the first stretching cycle. It is worth noting that if s̃ < 2Fp/k
sliding cannot take place, so that, during re-extension, the system essentially recovers its original
configuration by elastically unloading the two springs.

(b) Stage b: t ∈ [ta, tb) and |Fi(t)| = Fp.
At the beginning of this second stage s(ta) = 2Fp/k, while the crawler is subjected to balanced
forces of modulus Fp. Hence, by further increasing the shortening up to s̃, the left bristle slides
rightwards, whereas ẋ2(t) = δ̇1(t) = δ̇2(t) = 0. Consequently, the displacement of the right-hand
side remains unchanged and reads as

�1
b(t) = �1

a(ta) = −Fp

k
. (4.11)

(c) Stage c: t ∈ [tb, tc) and |Fi(t)| < Fp.
Upon decreasing the shortening s(t), the two elastic springs unload and the moduli of the forces
also, i.e. |Fi(t)|, decrease. Therefore, we can again set ẋ1(t) = ẋ2(t) = 0 in equation (4.6), so that, by
time integration of equation (4.7) and substitution into equation (4.4), we obtain the expressions
of the forces as

F1(t) = −F2(t) = − k[s(t) − s̃]
2

− Fp. (4.12)

As s(t) decreases, the two forces first vanish, and then invert their signs. For sufficiently small
values of s(t), F1 > 0 and F2 < 0, so that equation (4.12) holds as long as F2 > −Fp. Hence, at time
t = tc, sliding takes place at the tip of the right bristle for

s(tc) = s̃ − 4Fp

k
. (4.13)

By making use of the equations above and of the definition of �(t), we easily obtain the
expression for the displacement of the right end of the crawler as

�1
c(t) = −Fp

k
+ s̃ − s(t)

2
≤ Fp

k
. (4.14)
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crawler motion: theoretical results

Figure 10. Displacement of the right end of the crawler �(t) as a function of its shortening 0≤ s(t)≤ s̃. Note that five
stretching cycles are reported, with dashed and solid segments denoting the two regimes of stick and slip for the bristles,
respectively. (Online version in colour.)

(d) Stage d: t ∈ [tc, T] and |Fi(t)| = Fp.
At the beginning of the last stage s(tc) = s̃ − 4Fp/k, while the crawler is again subject to balanced
forces of modulus Fp. Hence, by decreasing the shortening to zero, the right bristle slides
rightwards. By setting ẋ1(t) = δ̇1(t) = δ̇2(t) = 0 into equation (4.6), we obtain

ẋ2(t) = l̇(t), (4.15)

which, upon time integration, provides the displacement of the right-hand side as

�1
d(t) = s̃ − s(t) − 3Fp

k
. (4.16)

The net advancement achieved during the first stretching cycle can be derived from
equation (4.16) by setting s(T) = s(0) = 0, leading to

�1
net = s̃ − 3Fp

k
. (4.17)

The result of equation (4.17) concludes the analysis of the first stretching cycle and sheds
light on the effect of the bristle stiffness on the crawler motility. In fact, as already observed
through direct experimentation and numerical computations, the net advancement is less than
the available shortening, and their difference, i.e. −3Fp/k, arises from the flexibility of the bristles.
It is also worth noting that, owing to the assumption of quasi-static crawling, the results above
do not depend on the precise time history of the shortening s(t), provided the contraction and
re-extension of the crawler are monotonic in time.

Subsequent stretching cycles can be similarly analysed, the only difference arising from the
fact that, while at the beginning of the first cycle the crawler is unloaded, i.e. Fi(0) = 0, this is not
the case of the following cycles and, in fact, |Fi(T)| = Fp.
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Denoting by n ≥ 2 the stretching cycle number, the expression for the displacement at the right-
hand side of the crawler follows as

�n(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− s(t)
2

+ �1
net +

(
s̃ − 4Fp

k

)
(n − 2) for 0 ≤ s(t) <

4Fp

k
,

−2Fp

k
+ �1

net +
(

s̃ − 4Fp

k

)
(n − 2) for

4Fp

k
≤ s(t) ≤ s̃,

−2Fp

k
+ s̃ − s(t)

2
+ �1

net +
(

s̃ − 4Fp

k

)
(n − 2) for s̃ − 4Fp

k
< s(t) ≤ s̃,

−4Fp

k
+ s̃ − s(t) + �1

net +
(

s̃ − 4Fp

k

)
(n − 2) for 0 ≤ s(t) ≤ s̃ − 4Fp

k
.

(4.18)

It turns out that the net advancement �n
net for the subsequent stretching cycles is less than that

of the first cycle by a factor Fp/k, namely

�n
net = s̃ − 4Fp

k
, (4.19)

the difference arising again from the state of pre-load of the bristles at the beginning and at the
end of each cycle such that n ≥ 2.

The crawler motion is shown in figure 10 in terms of the displacement at its end �(t) as a
function of the shortening 0 ≤ s(t) ≤ s̃. The results were obtained for s̃ = 20 mm and assuming
Fp/k = 0.95 mm, so that direct comparison is possible both with the results of figure 3 and of
figure 5. Specifically, the value of Fp/k was computed on the basis of the experimental and
computational results in order to obtain from equation (4.18) an advancement of 82 mm after
five stretching cycles, i.e. for n = 5. Note that the results of figure 10 well capture the features
of the crawler gait, such as the existence of the two regimes of stick and slip (and the related
changes in the slope of the diagram along all the branches), shown as dashed and solid segments,
respectively.

The analysis of the reduced one-dimensional model of figure 9 is now completed by the
evaluation of the work expended by the horizontal connector. For the first stretching cycle, this
immediately follows from the equations (4.7)–(4.17), namely

W1 =
F2

p

k
+ 2Fp

(
s̃ − 3

Fp

k

)
, (4.20)

and consists of a term of elastic energy stored in the bristles (first term) and a term of frictional
dissipation (second term). Similarly, the work expended by the connector can also be computed
for the following cycles, leading to

Wn = 2Fp

(
s̃ − 4

Fp

k

)
, (4.21)

an expression comprising only a frictional dissipation term and holding for n ≥ 2. It is now
worth noting that the expressions for the expended work only depend, at fixed gait, on the
value of Fp and on the ratio of Fp/k. As already discussed, kinematic arguments dictate
the value of Fp/k = 0.95 mm, so that equating the work expended during five cycles as
extracted from the finite-element computations, namely 75 mJ, with the corresponding expression
from equations (4.20)–(4.21), i.e. for n = 5, a value of Fp = 0.45 N is obtained, and in turn
k = 0.48 N mm−1. The value obtained for the effective frictional force Fp corresponds to the
average force acting on the connector as computed via numerical simulations (figure 7a).
Furthermore, the value of k = 0.48 N mm−1 is compatible with the horizontal, elastic stiffness of
the flexible bristles as determined through beam theory, so that these values definitely confirm
the adequacy of the proposed model in resolving both the kinematics and the energetics of the
crawler being investigated.
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5. Conclusion and perspectives
In this study, a model crawler capable to extract net positional changes from reciprocal,
breathing-like deformations was extensively analysed. This remarkable ability of the system
relies on directional frictional interactions with a textured substrate, mediated by flexible
inclined appendices. Both direct experimentation and nonlinear finite-element computations
were exploited to extract the key features of the system, and a reduced, effective model was
derived that well captures both the kinematics and the energetics of the crawler gait.

This simplified model provides us with a simple, yet powerful tool for the design
and performance prediction of self-propelled robotic crawlers exploiting directional frictional
interactions for locomotion.

Future work will consist of the study of the impact of the number and inclination of the
bristles on the motility of the crawler. Moreover, different and more generic substrates will be
considered, with the anticipation that smoother textures will produce less pronounced oscillations
in the mechanical interactions, with smaller discrepancy between peak and average values of the
interaction forces.

Finally, we plan to explore the possibility of actually implementing the concepts explored in
this study in practical designs of smaller size by exploiting active materials such as liquid crystal
elastomers [34,35].
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