We investigate the zero temperature structure of a crystalline monolayer
constrained to lie on a two-dimensional Riemannian manifold with variable
Gaussian curvature and boundary. A full analytical treatment is presented for
the case of a paraboloid of revolution. Using the geometrical theory of
topological defects in a continuum elastic background we find that the presence
of a variable Gaussian curvature, combined with the additional constraint of a
boundary, gives rise to a rich variety of phenomena beyond that known for
spherical crystals. We also provide a numerical analysis of a system of
classical particles interacting via a Coulomb potential on the surface of a
paraboloid.Comment: 12 pages, 8 figure