145 research outputs found

    Molecular mechanisms of neurogenic aging in the adult mouse subventricular zone

    Get PDF
    In the adult rodent brain, the continuous production of new neurons by neural stem/progenitor cells (NSPCs) residing in specialized neurogenic niches and their subsequent integration into pre-existing cerebral circuitries supports odour discrimination, spatial learning, and contextual memory capabilities. Aging is recognized as the most potent negative regulator of adult neurogenesis. The neurogenic process markedly declines in the aged brain, due to the reduction of the NSPC pool and the functional impairment of the remaining NSPCs. This decline has been linked to the progressive cognitive deficits of elderly individuals and it may also be involved in the onset/progression of neurological disorders. Since the human lifespan has been dramatically extended, the incidence of age-associated neuropsychiatric conditions in the human population has increased. This has prompted efforts to shed light on the mechanisms underpinning the age-related decline of adult neurogenesis, whose knowledge may foster therapeutic approaches to prevent or delay cognitive alterations in elderly patients. In this review, we summarize recent progress in elucidating the molecular causes of neurogenic aging in the most abundant NSPC niche of the adult mouse brain: the subventricular zone (SVZ). We discuss the age-associated changes occurring both in the intrinsic NSPC molecular networks and in the extrinsic signalling pathways acting in the complex environment of the SVZ niche, and how all these changes may steer young NSPCs towards an aged phenotype

    Terminal differentiation of adult hippocampal progenitor cells is a step functionally dissociable from proliferation and is controlled by Tis21, Id3 and NeuroD2

    Get PDF
    Cell proliferation and differentiation are interdependent processes. Here, we have asked to what extent the two processes of neural progenitor cell amplification and differentiation are functionally separated. Thus, we analyzed whether it is possible to rescue a defect of terminal differentiation in progenitor cells of the dentate gyrus, where new neurons are generated throughout life, by inducing their proliferation and/or their differentiation with different stimuli appropriately timed. As a model we used the Tis21 knockout mouse, whose dentate gyrus neurons, as demonstrated by us and others, have an intrinsic defect of terminal differentiation. We first tested the effect of two proliferative as well as differentiative neurogenic stimuli, one pharmacological (fluoxetine), the other cognitive (the Morris water maze (MWM) training). Both effectively enhanced the number of new dentate gyrus neurons produced, and fluoxetine also reduced the S-phase length of Tis21 knockout dentate gyrus progenitor cells and increased the rate of differentiation of control cells, but neither factor enhanced the defective rate of differentiation. In contrast, the defect of terminal differentiation was fully rescued by in vivo infection of proliferating dentate gyrus progenitor cells with retroviruses either silencing Id3, an inhibitor of neural differentiation, or expressing NeuroD2, a proneural gene expressed in terminally differentiated dentate gyrus neurons. This is the first demonstration that NeuroD2 or the silencing of Id3 can activate the differentiation of dentate gyrus neurons, complementing a defect of differentiation. It also highlights how the rate of differentiation of dentate gyrus neurons is regulated genetically at several levels and that a neurogenic stimulus for amplification of neural stem/progenitor cells may not be sufficient in itself to modify this rat

    Yeasts isolated from cloacal swabs, feces, and eggs of laying hens

    Get PDF
    Domestic and wild birds may act as carriers of human pathogenic fungi, although the role of laying hens in spreading yeasts has never been investigated. We evaluated the presence of yeasts in the cloaca (Group I, n = 364), feces (Group II, n = 96), and eggs (Group III, n = 270) of laying hens. The occurrence and the population size of yeasts on the eggshell, as well as in the yolks and albumens, were assessed at the oviposition time and during storage of eggs at 22 ± 1°C and 4 ± 1°C. A statistically higher prevalence and population size of yeasts were recorded in Group I (49.7% and 1.3 × 104 cfu/ml) and II (63.8% and 2.8 × 105 cfu/ml) than in Group III (20.7% and 19.9 cfu/ml). Candida catenulata and Candida albicans were the most frequent species isolated. Candida famata and Trichosporon asteroides were isolated only from the eggshells, whereas Candida catenulata was also isolated from yolks and albumens. During storage, the yeast population size on the shell decreased (from 37.5 to 8.5 cfu/ml) in eggs at 22 ± 1°C and increased (from 4.6 to 35.3 cfu/ml) at 4 ± 1°C. The laying hens harbor potentially pathogenic yeasts in their gastrointestinal tract and are prone to disseminating them in the environment through the feces and eggs. Eggshell contamination might occur during the passage through the cloaca or following deposition whereas yolk and albumen contamination might depend on yeast density on eggshell

    Green synthesis of privileged benzimidazole scaffolds using active deep eutectic solvent

    Get PDF
    The exploitation and use of alternative synthetic methods, in the face of classical procedures that do not conform to the ethics of green chemistry, represent an ever-present problem in the pharmaceutical industry. The procedures for the synthesis of benzimidazoles have become a focus in synthetic organic chemistry, as they are building blocks of strong interest for the development of compounds with pharmacological activity. Various benzimidazole derivatives exhibit important activities such as antimicrobial, antiviral, anti-inflammatory, and analgesic activities, and some of the already synthesized compounds have found very strong applications in medicine praxis. Here we report a selective and sustainable method for the synthesis of 1,2-disubstituted or 2-substituted benzimidazoles, starting from o-phenylenediamine in the presence of different aldehydes. The use of deep eutectic solvent (DES), both as reaction medium and reagent without any external solvent, provides advantages in terms of yields as well as in the work up procedure of the reaction.Fil: Gioia, Maria Luisa Di. Università della Calabria; ItaliaFil: Cassano, Roberta. Università della Calabria; ItaliaFil: Costanzo, Paola. Magna Græcia University. Department of Health Sciences; ItaliaFil: Herrera Cano, Natividad Carolina. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Ciencia y Tecnología de Alimentos Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Ciencia y Tecnología de Alimentos Córdoba; ArgentinaFil: Maiuolo, Loredana. Università della Calabria; ItaliaFil: Nardi, Monica. Magna Græcia University. Department of Health Sciences; ItaliaFil: Nicoletta, Fiore Pasquale. Università della Calabria; ItaliaFil: Oliverio, Manuela. Magna Græcia University. Department of Health Sciences; ItaliaFil: Procopio, Antonio. Magna Græcia University. Department of Health Sciences; Itali

    Zebrafish Tric-b is required for skeletal development and bone cells differentiation

    Get PDF
    IntroductionTrimeric intracellular potassium channels TRIC-A and -B are endoplasmic reticulum (ER) integral membrane proteins, involved in the regulation of calcium release mediated by ryanodine (RyRs) and inositol 1,4,5-trisphosphate (IP3Rs) receptors, respectively. While TRIC-A is mainly expressed in excitable cells, TRIC-B is ubiquitously distributed at moderate level. TRIC-B deficiency causes a dysregulation of calcium flux from the ER, which impacts on multiple collagen specific chaperones and modifying enzymatic activity, leading to a rare form of osteogenesis imperfecta (OI Type XIV). The relevance of TRIC-B on cell homeostasis and the molecular mechanism behind the disease are still unknown.ResultsIn this study, we exploited zebrafish to elucidate the role of TRIC-B in skeletal tissue. We demonstrated, for the first time, that tmem38a and tmem38b genes encoding Tric-a and -b, respectively are expressed at early developmental stages in zebrafish, but only the latter has a maternal expression. Two zebrafish mutants for tmem38b were generated by CRISPR/Cas9, one carrying an out of frame mutation introducing a premature stop codon (tmem38b-/-) and one with an in frame deletion that removes the highly conserved KEV domain (tmem38bΔ120-7/Δ120-7). In both models collagen type I is under-modified and partially intracellularly retained in the endoplasmic reticulum, as described in individuals affected by OI type XIV. Tmem38b-/- showed a mild skeletal phenotype at the late larval and juvenile stages of development whereas tmem38bΔ120-7/Δ120-7 bone outcome was limited to a reduced vertebral length at 21 dpf. A caudal fin regeneration study pointed towards impaired activity of osteoblasts and osteoclasts associated with mineralization impairment.DiscussionOur data support the requirement of Tric-b during early development and for bone cell differentiation

    Adipokines and coronary artery disease

    Get PDF
    Adipose tissue, besides being an important energetic storage, is also a source of cytokines and hormones which act in a paracrine, autocrine and especially endocrine manner, influencing the cardiometabolic axis. Adipokines are a group of mediators with pleiotropic function, that are involved in many physiological processes, so that a disregulation in their secretion can lead to multiple pathological conditions. In this review our aim was to clarify the role of adipokines in the pathogenesis of atherosclerosis, especially in coronary artery disease, and based on current scientific evidence, to analyze the therapeutic and behavioral strategies that are so far available

    SARS-CoV-2 vaccination modelling for safe surgery to save lives : data from an international prospective cohort study

    Get PDF
    Background: Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods: The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results: NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion: As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population.Peer reviewe
    corecore