147 research outputs found

    Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies

    Get PDF
    BACKGROUND: Recent studies indicate that microRNAs (miRNAs) are mechanistically involved in the development of various human malignancies, suggesting that they represent a promising new class of cancer biomarkers. However, previously reported methods for measuring miRNA expression consume large amounts of tissue, prohibiting high-throughput miRNA profiling from typically small clinical samples such as excision or core needle biopsies of breast or prostate cancer. Here we describe a novel combination of linear amplification and labeling of miRNA for highly sensitive expression microarray profiling requiring only picogram quantities of purified microRNA. RESULTS: Comparison of microarray and qRT-PCR measured miRNA levels from two different prostate cancer cell lines showed concordance between the two platforms (Pearson correlation R(2 )= 0.81); and extension of the amplification, labeling and microarray platform was successfully demonstrated using clinical core and excision biopsy samples from breast and prostate cancer patients. Unsupervised clustering analysis of the prostate biopsy microarrays separated advanced and metastatic prostate cancers from pooled normal prostatic samples and from a non-malignant precursor lesion. Unsupervised clustering of the breast cancer microarrays significantly distinguished ErbB2-positive/ER-negative, ErbB2-positive/ER-positive, and ErbB2-negative/ER-positive breast cancer phenotypes (Fisher exact test, p = 0.03); as well, supervised analysis of these microarray profiles identified distinct miRNA subsets distinguishing ErbB2-positive from ErbB2-negative and ER-positive from ER-negative breast cancers, independent of other clinically important parameters (patient age; tumor size, node status and proliferation index). CONCLUSION: In sum, these findings demonstrate that optimized high-throughput microRNA expression profiling offers novel biomarker identification from typically small clinical samples such as breast and prostate cancer biopsies

    Viral load is strongly associated with length of stay in adults hospitalised with viral acute respiratory illness

    Full text link
    Background: respiratory viruses are detectable in a large proportion of adults hospitalised with acute respiratory illness. For influenza and other viruses there is evidence that viral load and persistence are associated with certain clinical outcomes but it is not known if there is an association between viral load and hospital length of stay. Methods: 306 adults hospitalised with viral acute respiratory illness were studied. Associations between viral load and length of stay were examined. Multiple linear regression analysis was performed to control for age, comorbidity, influenza vaccine status, duration of illness prior to hospitalisation, bacterial co-infection, clinical group and virus subtype.Results: high viral load was associated with a longer duration of hospitalisation for all patients (p &lt;0.0001). This remained significant across all virus types and clinical groups and when adjusted for age, comorbidity, duration of illness prior to hospitalisation, bacterial co-infection and other factors. Conclusions: high viral loads are associated with prolonged hospital length of stay in adults with viral acute respiratory illness. This further supports existing evidence demonstrating that viral acute respiratory illness is a viral load driven process and suggests that viral load could be used in clinical practise to predict prolonged hospitalisation and prioritise antivirals. International Standard Randomised Controlled Trial Number (ISRCTN): 21521552<br/

    Germline Variation Controls the Architecture of Somatic Alterations in Tumors

    Get PDF
    Studies have suggested that somatic events in tumors can depend on an individual's constitutional genotype. We used squamous cell carcinomas (SCC) of the skin, which arise in high multiplicity in organ transplant recipients, as a model to compare the pattern of somatic alterations within and across individuals. Specifically, we performed array comparative genomic hybridization on 104 tumors from 25 unrelated individuals who each had three or more independently arisen SCCs and compared the profiles occurring within patients to profiles of tumors across a larger set of 135 patients. In general, chromosomal aberrations in SCCs were more similar within than across individuals (two-sided exact-test p-value ), consistent with the notion that the genetic background was affecting the pattern of somatic changes. To further test this possibility, we performed allele-specific imbalance studies using microsatellite markers mapping to 14 frequently aberrant regions of multiple independent tumors from 65 patients. We identified nine loci which show evidence of preferential allelic imbalance. One of these loci, 8q24, corresponded to a region in which multiple single nucleotide polymorphisms have been associated with increased cancer risk in genome-wide association studies (GWAS). We tested three implicated variants and identified one, rs13281615, with evidence of allele-specific imbalance (p-value = 0.012). The finding of an independently identified cancer susceptibility allele with allele-specific imbalance in a genomic region affected by recurrent DNA copy number changes suggest that it may also harbor risk alleles for SCC. Together these data provide strong evidence that the genetic background is a key driver of somatic events in cancer, opening an opportunity to expand this approach to identify cancer risk alleles

    Expression of eEF1A2 is associated with clear cell histology in ovarian carcinomas: overexpression of the gene is not dependent on modifications at the EEF1A2 locus

    Get PDF
    The tissue-specific translation elongation factor eEF1A2 is a potential oncogene that is overexpressed in human ovarian cancer. eEF1A2 is highly similar (98%) to the near-ubiquitously expressed eEF1A1 (formerly known as EF1-α) making analysis with commercial antibodies difficult. We wanted to establish the expression pattern of eEF1A2 in ovarian cancer of defined histological subtypes at both the RNA and protein level, and to establish the mechanism for the overexpression of eEF1A2 in tumours. We show that while overexpression of eEF1A2 is seen at both the RNA and protein level in up to 75% of clear cell carcinomas, it occurs at a lower frequency in other histological subtypes. The copy number at the EEF1A2 locus does not correlate with expression level of the gene, no functional mutations were found, and the gene is unmethylated in both normal and tumour DNA, showing that overexpression is not dependent on genetic or epigenetic modifications at the EEF1A2 locus. We suggest that the cause of overexpression of eEF1A2 may be the inappropriate expression of a trans-acting factor. The oncogenicity of eEF1A2 may be related either to its role in protein synthesis or to potential non-canonical functions

    Identification of stable reference genes for quantitative PCR in koalas

    Get PDF
    To better understand host and immune response to diseases, gene expression studies require identification of reference genes with stable expression for accurate normalisation. This study describes the identification and testing of reference genes with stable expression profiles in koala lymph node tissues across two genetically distinct koala populations. From the 25 most stable genes identified in transcriptome analysis, 11 genes were selected for verification using reverse transcription quantitative PCR, in addition to the commonly used ACTB and GAPDH genes. The expression data were analysed using stable genes statistical software - geNorm, BestKeeper, NormFinder, the comparative ΔCt method and RefFinder. All 13 genes showed relative stability in expression in koala lymph node tissues, however Tmem97 and Hmg20a were identified as the most stable genes across the two koala populations

    Robust physical methods that enrich genomic regions identical by descent for linkage studies: confirmation of a locus for osteogenesis imperfecta

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The monogenic disease osteogenesis imperfecta (OI) is due to single mutations in either of the collagen genes ColA1 or ColA2, but within the same family a given mutation is accompanied by a wide range of disease severity. Although this phenotypic variability implies the existence of modifier gene variants, genome wide scanning of DNA from OI patients has not been reported. Promising genome wide marker-independent physical methods for identifying disease-related loci have lacked robustness for widespread applicability. Therefore we sought to improve these methods and demonstrate their performance to identify known and novel loci relevant to OI.</p> <p>Results</p> <p>We have improved methods for enriching regions of identity-by-descent (IBD) shared between related, afflicted individuals. The extent of enrichment exceeds 10- to 50-fold for some loci. The efficiency of the new process is shown by confirmation of the identification of the Col1A2 locus in osteogenesis imperfecta patients from Amish families. Moreover the analysis revealed additional candidate linkage loci that may harbour modifier genes for OI; a locus on chromosome 1q includes COX-2, a gene implicated in osteogenesis.</p> <p>Conclusion</p> <p>Technology for physical enrichment of IBD loci is now robust and applicable for finding genes for monogenic diseases and genes for complex diseases. The data support the further investigation of genetic loci other than collagen gene loci to identify genes affecting the clinical expression of osteogenesis imperfecta. The discrimination of IBD mapping will be enhanced when the IBD enrichment procedure is coupled with deep resequencing.</p

    Mechanisms Underlying Hypoxia Tolerance in Drosophila melanogaster: hairy as a Metabolic Switch

    Get PDF
    Hypoxia-induced cell injury has been related to multiple pathological conditions. In order to render hypoxia-sensitive cells and tissues resistant to low O2 environment, in this current study, we used Drosophila melanogaster as a model to dissect the mechanisms underlying hypoxia-tolerance. A D. melanogaster strain that lives perpetually in an extremely low-oxygen environment (4% O2, an oxygen level that is equivalent to that over about 4,000 m above Mt. Everest) was generated through laboratory selection pressure using a continuing reduction of O2 over many generations. This phenotype is genetically stable since selected flies, after several generations in room air, survive at this low O2 level. Gene expression profiling showed striking differences between tolerant and naïve flies, in larvae and adults, both quantitatively and qualitatively. Up-regulated genes in the tolerant flies included signal transduction pathways (e.g., Notch and Toll/Imd pathways), but metabolic genes were remarkably down-regulated in the larvae. Furthermore, a different allelic frequency and enzymatic activity of the triose phosphate isomerase (TPI) was present in the tolerant versus naïve flies. The transcriptional suppressor, hairy, was up-regulated in the microarrays and its binding elements were present in the regulatory region of the specifically down-regulated metabolic genes but not others, and mutations in hairy significantly reduced hypoxia tolerance. We conclude that, the hypoxia-selected flies: (a) altered their gene expression and genetic code, and (b) coordinated their metabolic suppression, especially during development, with hairy acting as a metabolic switch, thus playing a crucial role in hypoxia-tolerance

    Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility

    Get PDF
    Genome-wide association studies (GWAS) have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs) and susceptibility to development of a range of human tumors. However, the effect of each SNP in isolation is very small, and all of the SNPs combined only account for a relatively minor proportion of the total genetic risk (5–10%). There is therefore a major requirement for alternative routes to the discovery of genetic risk factors for cancer. We have previously shown using mouse models that chromosomal regions harboring susceptibility genes identified by linkage analysis frequently exhibit allele-specific genetic alterations in tumors. We demonstrate here that the Fbxw7 gene, a commonly mutated gene in a wide range of mouse and human cancers, shows allele-specific deletions in mouse lymphomas and skin tumors. Lymphomas from three different F1 hybrids show 100% allele-specificity in the patterns of allelic loss. Parental alleles from 129/Sv or Spretus/Gla mice are lost in tumors from F1 hybrids with C57BL/6 animals, due to the presence of a specific non-synonymous coding sequence polymorphism at the N-terminal portion of the gene. A specific genetic test of association between this SNP and lymphoma susceptibility in interspecific backcross mice showed a significant linkage (p = 0.001), but only in animals with a functional p53 gene. These data therefore identify Fbxw7 as a p53-dependent tumor susceptibility gene. Increased p53-dependent tumor susceptibility and allele-specific losses were also seen in a mouse skin model of skin tumor development. We propose that analysis of preferential allelic imbalances in tumors may provide an efficient means of uncovering genetic variants that affect mouse and human tumor susceptibility

    Promoter methylation analysis of O6-methylguanine-DNA methyltransferase in glioblastoma: detection by locked nucleic acid based quantitative PCR using an imprinted gene (SNURF) as a reference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic silencing of the <it>MGMT </it>gene by promoter methylation is associated with loss of <it>MGMT </it>expression, diminished DNA-repair activity and longer overall survival in patients with glioblastoma who, in addition to radiotherapy, received alkylating chemotherapy with carmustine or temozolomide. We describe and validate a rapid methylation sensitive quantitative PCR assay (MS-qLNAPCR) using Locked Nucleic Acid (LNA) modified primers and an imprinted gene as a reference.</p> <p>Methods</p> <p>An analysis was made of a database of 159 GBM patients followed between April 2004 and October 2008. After bisulfite treatment, methylated and unmethylated CpGs were recognized by LNA primers and molecular beacon probes. The <it>SNURF </it>promoter of an imprinted gene mapped on 15q12, was used as a reference. This approach was used because imprinted genes have a balanced copy number of methylated and unmethylated alleles, and this feature allows an easy and a precise normalization.</p> <p>Results</p> <p>Concordance between already described nested MS-PCR and MS-qLNAPCR was found in 158 of 159 samples (99.4%). The MS-qLNAPCR assay showed a PCR efficiency of 102% and a sensitivity of 0.01% for LNA modified primers, while unmodified primers revealed lower efficiency (69%) and lower sensitivity (0.1%). <it>MGMT </it>promoter was found to be methylated using MS-qLNAPCR in 70 patients (44.02%), and completely unmethylated in 89 samples (55.97%). Median overall survival was of 24 months, being 20 months and 36 months, in patients with <it>MGMT </it>unmethylated and methylated, respectively. Considering <it>MGMT </it>methylation data provided by MS-qLNAPCR as a binary variable, overall survival was different between patients with GBM samples harboring <it>MGMT </it>promoter unmethylated and other patients with any percentage of <it>MGMT </it>methylation (p = 0.003). This difference was retained using other cut off values for <it>MGMT </it>methylation rate (i.e. 10% and 20% of methylated allele), while the difference was lost when 50% of <it>MGMT </it>methylated allele was used as cut-off.</p> <p>Conclusions</p> <p>We report and clinically validate an accurate, robust, and cost effective MS-qLNAPCR protocol for the detection and quantification of methylated <it>MGMT </it>alleles in GBM samples. Using MS-qLNAPCR we demonstrate that even low levels of <it>MGMT </it>promoter methylation have to be taken into account to predict response to temozolomide-chemotherapy.</p
    corecore