134 research outputs found

    Oxidative stress in relation to diet and physical activity among premenopausal women

    Get PDF
    Abstract Higher levels of oxidative stress, as measured by F 2 -isoprostanes, have been associated with chronic diseases such as CVD and some cancers. Improvements in diet and physical activity may help reduce oxidative stress; however, previous studies regarding associations between lifestyle factors and F 2 -isoprostane concentrations have been inconsistent. The aim of this cross-sectional study was to investigate whether physical activity and intakes of fruits/vegetables, antioxidant nutrients, dietary fat subgroups and alcohol are associated with concentrations of F 2 -isoprostane and the major F 2 -isoprostane metabolite. Urinary F 2 -isoprostane and its metabolite were measured in urine samples collected at enrolment from 912 premenopausal women (aged 35–54 years) participating in the Sister Study. Physical activity, alcohol consumption and dietary intakes were self-reported via questionnaires. With adjustment for potential confounders, the geometric means of F 2 -isoprostane and its metabolite were calculated according to quartiles of dietary intakes, alcohol consumption and physical activity, and linear regression models were used to evaluate trends. Significant inverse associations were found between F 2 -isoprostane and/or its metabolite and physical activity, vegetables, fruits, vitamin C, α -carotene, vitamin E, β -carotene, vitamin A, Se, lutein+zeaxanthin and long-chain n -3 fatty acids. Although trans fats were positively associated with both F 2 -isoprostane and its metabolite, other dietary fat subgroups including SFA, n -6 fatty acids, n -3 fatty acids, MUFA, PUFA, short-chain n -3 fatty acids, long-chain n -3 fatty acids and total fat were not associated with either F 2 -isoprostane or its metabolite. Our findings suggest that lower intake of antioxidant nutrients and higher intake of trans fats may be associated with greater oxidative stress among premenopausal women

    Identification of the Major Urinary Metabolite of the Highly Reactive Cyclopentenone Isoprostane 15-A2t-Isoprostane in Vivo

    Get PDF
    The cyclopentenone isoprostanes (A(2)/J(2)-IsoPs) are formed in significant amounts in humans and rodents esterified in tissue phospholipids. Nonetheless, they have not been detected unesterified in the free form, presumably because of their marked reactivity. A(2)/J(2)-IsoPs, similar to other electrophilic lipids such as 15-deoxy-Delta(12,14)-prostaglandin J(2) and 4-hydroxynonenal, contain a highly reactive alpha,beta-unsaturated carbonyl, which allows these compounds to react with thiol-containing biomolecules to produce a range of biological effects. We sought to identify and characterize in rats the major urinary metabolite of 15-A(2t)-IsoP, one of the most abundant A(2)-IsoPs produced in vivo, in order to develop a specific biomarker that can be used to quantify the in vivo production of these molecules. Following intravenous administration of 15-A(2t)-IsoP containing small amounts of [(3)H(4)]15-A(2t)-IsoP, 80% of the radioactivity excreted in the urine remained in aqueous solution after extraction with organic solvents, indicating the formation of a polar conjugate(s). Using high pressure liquid chromatography/mass spectrometry, the major urinary metabolite of 15-A(2t)-IsoP was determined to be the mercapturic acid sulfoxide conjugate in which the carbonyl at C9 was reduced to an alcohol. The structure was confirmed by direct comparison to a synthesized standard and via various chemical derivatizations. In addition, this metabolite was found to be formed in significant quantities in urine from rats exposed to an oxidant stress. The identification of this metabolite combined with the finding that these metabolites are produced in in vivo settings of oxidant stress makes it possible to use this method to quantify, for the first time, the in vivo production of cyclopentenone prostanoids

    Isotope-reinforced polyunsaturated fatty acids improve Parkinson’s disease-like phenotype in rats overexpressing α-synuclein

    Get PDF
    Producción CientíficaLipid peroxidation is a key to a portfolio of neurodegenerative diseases and plays a central role in α-synuclein (α-syn) toxicity, mitochondrial dysfunction and neuronal death, all key processes in the pathogenesis of Parkinson's disease (PD). Polyunsaturated fatty acids (PUFAs) are important constituents of the synaptic and mitochondrial membranes and are often the first molecular targets attacked by reactive oxygen species (ROS). The rate-limiting step of the chain reaction of ROS-initiated PUFAs autoxidation involves hydrogen abstraction at bis-allylic sites, which can be slowed down if hydrogens are replaced with deuteriums. In this study, we show that targeted overexpression of human A53T α-syn using an AAV vector unilaterally in the rat substantia nigra reproduces some of pathological features seen in PD patients. Chronic dietary supplementation with deuterated PUFAs (D-PUFAs), specifically 0.8% D-linoleic and 0.3% H-linolenic, produced significant disease-modifying beneficial effects against α-syn-induced motor deficits, synaptic pathology, oxidative damage, mitochondrial dysfunction, disrupted trafficking along axons, inflammation and DA neuronal loss. These findings support the clinical evaluation of D-PUFAs as a neuroprotective therapy for PD

    Urinary eicosanoid metabolites in HIV-infected women with central obesity switching to raltegravir: an analysis from the women, integrase, and fat accumulation trial.

    Get PDF
    Chronic inflammation is a hallmark of HIV infection. Eicosanoids reflect inflammation, oxidant stress, and vascular health and vary by sex and metabolic parameters. Raltegravir (RAL) is an HIV-1 integrase inhibitor that may have limited metabolic effects. We assessed urinary F2-isoprostanes (F2-IsoPs), prostaglandin E2 (PGE-M), prostacyclin (PGI-M), and thromboxane B2 (TxB2) in HIV-infected women switching to RAL-containing antiretroviral therapy (ART). Thirty-seven women (RAL = 17; PI/NNRTI = 20) with a median age of 43 years and BMI 32 kg/m(2) completed week 24. TxB2 increased in the RAL versus PI/NNRTI arm (+0.09 versus -0.02; P = 0.06). Baseline PGI-M was lower in the RAL arm (P = 0.005); no other between-arm cross-sectional differences were observed. In the PI/NNRTI arm, 24-week visceral adipose tissue change correlated with PGI-M (rho = 0.45; P = 0.04) and TxB2 (rho = 0.44; P = 0.005) changes, with a trend seen for PGE-M (rho = 0.41; P = 0.07). In an adjusted model, age ≥ 50 years (N = 8) was associated with increased PGE-M (P = 0.04). In this randomized trial, a switch to RAL did not significantly affect urinary eicosanoids over 24 weeks. In women continuing PI/NNRTI, increased visceral adipose tissue correlated with increased PGI-M and PGE-M. Older age (≥ 50) was associated with increased PGE-M. Relationships between aging, adiposity, ART, and eicosanoids during HIV-infection require further study

    Common Supplements Found To Lower Circulating Inflammation Levels

    Get PDF
    Glucosamine and chondroitin are popular non-vitamin dietary supplements used for osteoarthritis. Long-term use is associated with lower incidence of colorectal and lung cancers and with lower mortality; however, the mechanism underlying these observations is unknown. In vitro and animal studies show that glucosamine and chondroitin inhibit NF-kB, a central mediator of inflammation, but no definitive trials have been done in healthy humans.We conducted a randomized, double-blind, placebo-controlled, cross-over study to assess the effects of glucosamine hydrochloride (1500 mg/d) plus chondroitin sulfate (1200 mg/d) for 28 days compared to placebo in 18 (9 men, 9 women) healthy, overweight (body mass index 25.0-32.5 kg/m2) adults, aged 20-55 y. We examined 4 serum inflammatory biomarkers: C-reactive protein (CRP), interleukin 6, and soluble tumor necrosis factor receptors I and II; a urinary inflammation biomarker: prostaglandin E2-metabolite; and a urinary oxidative stress biomarker: F2-isoprostane. Plasma proteomics on an antibody array was performed to explore other pathways modulated by glucosamine and chondroitin.Serum CRP concentrations were 23% lower after glucosamine and chondroitin compared to placebo (P = 0.048). There were no significant differences in other biomarkers. In the proteomics analyses, several pathways were significantly different between the interventions after Bonferroni correction, the most significant being a reduction in the "cytokine activity" pathway (P = 2.6 x 10-16), after glucosamine and chondroitin compared to placebo.Glucosamine and chondroitin supplementation may lower systemic inflammation and alter other pathways in healthy, overweight individuals. This study adds evidence for potential mechanisms supporting epidemiologic findings that glucosamine and chondroitin are associated with reduced risk of lung and colorectal cancer.ClinicalTrials.gov NCT01682694

    Electrophilic Cyclopentenone Neuroprostanes Are Anti-inflammatory Mediators Formed from the Peroxidation of the ω -3 Polyunsaturated Fatty Acid Docosahexaenoic Acid.

    Get PDF
    The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) possesses potent anti-inflammatory properties and has shown therapeutic benefit in numerous inflammatory diseases. However, the molecular mechanisms of these anti-inflamma- tory properties are poorly understood. DHA is highly suscepti- ble to peroxidation, which yields an array of potentially bioac- tive lipid species. One class of compounds are cyclopentenone neuroprostanes (A4/J4-NPs), which are highly reactive and similar in structure to anti-inflammatory cyclopentenone prostaglandins. Here we show that a synthetic A4/J4-NP, 14-A4-NP (A4-NP), potently suppresses lipopolysaccharide- induced expression of inducible nitric-oxide synthase and cyclooxygenase-2 in macrophages. Furthermore, A4-NP blocks lipopolysaccharide-induced NF-KB activation via inhibition of I kinase-mediated phosphorylation of IKB. Mutation on Ik kinase b-cysteine 179 markedly diminishes the effect of A4-NP, suggesting that A4-NP acts via thiol mod- ification at this residue. Accordingly, the effects of A4-NP are independent of peroxisome proliferator-activated receptor-gamma and are dependent on an intact reactive cyclopentenone ring. Interestingly, free radical-mediated oxidation of DHA greatly enhances its anti-inflammatory potency, an effect that closely parallels the formation of A4/J4-NPs. Furthermore, chemical reduction or conjugation to glutathione, both of which elim- inate the bioactivity of A4-NP, also abrogate the anti-inflam- matory effects of oxidized DHA. Thus, we have demonstrated that A4/J4-NPs, formed via the oxidation of DHA, are potent inhibitors of NF-kB signaling and may contribute to the anti- inflammatory actions of DHA. These findings have implica- tions for understanding the anti-inflammatory properties of omega-3 fatty acids, and elucidate novel interactions between lipid peroxidation products and inflammation

    Urinary Eicosanoid Metabolites in HIV-Infected Women with Central Obesity Switching to Raltegravir: An Analysis from the Women, Integrase, and Fat Accumulation Trial

    Get PDF
    Chronic inflammation is a hallmark of HIV infection. Eicosanoids reflect inflammation, oxidant stress, and vascular health and vary by sex and metabolic parameters. Raltegravir (RAL) is an HIV-1 integrase inhibitor that may have limited metabolic effects. We assessed urinary F2-isoprostanes (F2-IsoPs), prostaglandin E2 (PGE-M), prostacyclin (PGI-M), and thromboxane B2 (TxB2) in HIV-infected women switching to RAL-containing antiretroviral therapy (ART). Thirty-seven women (RAL = 17; PI/NNRTI = 20) with a median age of 43 years and BMI 32 kg/m2 completed week 24. TxB2 increased in the RAL versus PI/NNRTI arm (+0.09 versus −0.02; P=0.06). Baseline PGI-M was lower in the RAL arm (P=0.005); no other between-arm cross-sectional differences were observed. In the PI/NNRTI arm, 24-week visceral adipose tissue change correlated with PGI-M (rho=0.45; P=0.04) and TxB2 (rho=0.44; P=0.005) changes, with a trend seen for PGE-M (rho=0.41; P=0.07). In an adjusted model, age ≥ 50 years (N=8) was associated with increased PGE-M (P=0.04). In this randomized trial, a switch to RAL did not significantly affect urinary eicosanoids over 24 weeks. In women continuing PI/NNRTI, increased visceral adipose tissue correlated with increased PGI-M and PGE-M. Older age (≥50) was associated with increased PGE-M. Relationships between aging, adiposity, ART, and eicosanoids during HIV-infection require further study

    Cyclopentenone Isoprostanes Inhibit the Inflammatory Response in Macrophages

    Get PDF
    Although both inflammation and oxidative stress contribute to the pathogenesis of many disease states, the interaction between the two is poorly understood. Cyclopentenone isoprostanes (IsoPs), highly reactive structural isomers of the bioactive cyclopentenone prostaglandins PGA2 and PGJ2, are formed non-enzymatically as products of oxidative stress in vivo. We have, for the first time, examined the effects of synthetic 15-A2- and 15-J2-IsoPs, two groups of endogenous cyclopentenone IsoPs, on the inflammatory response in RAW264.7 and primary murine macrophages. Cyclopentenone IsoPs potently inhibited lipopolysaccharide-stimulated IkappaB alpha degradation and subsequent NF-kappaB nuclear translocation and transcriptional activity. Expression of inducible nitric-oxide synthase and cyclooxygenase-2 were also inhibited by cyclopentenone IsoPs as was nitrite and prostaglandin production (IC50 approximately 360 and 210 nM, respectively). 15-J2-IsoPs potently activated peroxisome proliferator-activated receptor gamma (PPARgamma) nuclear receptors, whereas 15-A2-IsoP did not, although the anti-inflammatory effects of both molecules were PPARgamma-independent. Interestingly 15-A2-IsoPs induced oxidative stress in RAW cells that was blocked by the antioxidant 4-hydroxy-TEMPO (TEMPOL) or the mitochondrial uncoupler carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone. TEMPOL also abrogated the inhibitory effect of 15-A2-IsoPs on lipopolysaccharide-induced NF-kappaB activation, inducible nitricoxide synthase expression, and nitrite production, suggesting that 15-A2-IsoPs inhibit the NF-kappaB pathway at least partially via a redox-dependent mechanism. 15-J2-IsoP, but not 15-A2-IsoP, also potently induced RAW cell apoptosis again via a PPAR gamma-independent mechanism. These findings suggest that cyclopentenone IsoPs may serve as negative feedback regulators of inflammation and have important implications for defining the role of oxidative stress in the inflammatory response
    • …
    corecore