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Abstract

Higher levels of oxidative stress, as measured by F2-isoprostanes, have been associated with 

chronic diseases such as CVD and some cancers. Improvements in diet and physical activity may 

help reduce oxidative stress; however, previous studies regarding associations between lifestyle 

factors and F2-isoprostane concentrations have been inconsistent. The aim of this cross-sectional 

study was to investigate whether physical activity and intakes of fruits/vegetables, antioxidant 

nutrients, dietary fat subgroups and alcohol are associated with concentrations of F2-isoprostane 

and the major F2-isoprostane metabolite. Urinary F2-isoprostane and its metabolite were measured 

in urine samples collected at enrolment from 912 premenopausal women (aged 35–54 years) 

participating in the Sister Study. Physical activity, alcohol consumption and dietary intakes were 

self-reported via questionnaires. With adjustment for potential confounders, the geometric means 

of F2-isoprostane and its metabolite were calculated according to quartiles of dietary intakes, 

alcohol consumption and physical activity, and linear regression models were used to evaluate 

trends. Significant inverse associations were found between F2-isoprostane and/or its metabolite 

and physical activity, vegetables, fruits, vitamin C, α-carotene, vitamin E, β-carotene, vitamin A, 

Se, lutein + zeaxanthin and long-chain n-3 fatty acids. Although trans fats were positively 

associated with both F2-isoprostane and its metabolite, other dietary fat subgroups including SFA, 

n-6 fatty acids, n-3 fatty acids, MUFA, PUFA, short-chain n-3 fatty acids, long-chain n-3 fatty 

acids and total fat were not associated with either F2-isoprostane or its metabolite. Our findings 

suggest that lower intake of antioxidant nutrients and higher intake of trans fats may be associated 

with greater oxidative stress among premenopausal women.
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Oxidative stress, an unfavourable imbalance between production of reactive oxygen species 

and antioxidant defence, has been implicated in the aetiology of several chronic diseases 

including CVD, diabetes and some cancers(1–5). Although some chronic disease risk factors 

such as smoking have been consistently associated with higher levels of oxidative stress(6,7), 

relationships with other lifestyle factors such as diet, alcohol consumption and physical 

activity have not been well characterised in healthy adults.

Diet may be linked to oxidative stress through the consumption of antioxidants – substances 

that inhibit the oxidation of body substrates by reactive oxygen species. Nutrients with 

established antioxidant activity include carotenoids (β-carotene, α-carotene, lycopene, 

cryptoxanthin, lutein and zeaxanthin), vitamin C (ascorbic acid), vitamin E (α-tocopherol), 

Se and Zn(8). While some of these nutrients such as carotenoids act directly by quenching 

singlet molecular oxygen and free radicals(9,10), others such as Zn act indirectly as cofactors 

of antioxidant enzymes(11). Although some studies have observed lower oxidative stress 

levels with higher dietary intakes of various antioxidant nutrients, such associations have not 

been demonstrated consistently(12–17). Similarly, consumption of fruits and vegetables, 

foods rich in antioxidants, has been inversely associated with oxidative stress in some, but 

not all, observational studies(12,18–20).

Dietary fats may also be related to oxidative stress levels. Though n-3 fatty acids have been 

associated with lower oxidative stress in some reports(21,22), higher intakes of trans fat and 

SFA were related to higher oxidative stress in a recent study among midlife women(13). 

However, human studies investigating the relationships between various dietary fat 

subgroups and oxidative stress are limited.

Associations between oxidative stress and other behaviours such as physical activity and 

alcohol consumption are also uncertain. While acute, vigorous exercise appears to increase 

oxidative stress, chronic, moderate-intensity physical activity may have the opposite effect 

over the long term(23,24). Similarly, excess consumption of alcohol is linked to oxidative 

stress through ethanol metabolism, which involves the production of reactive oxygen 

species(25). However, the effect of regularly consuming moderate amounts of alcohol 

remains unclear.

Although numerous biomarkers of oxidative stress exist, F2-isoprostanes (F2-IsoP), 

generated from free radical-catalysed peroxidation of arachidonic acid, are considered to be 

among the most accurate(26,27). F2-IsoP have been positively associated with chronic disease 

risk factors such as obesity and smoking(28). Though prospective studies to date are limited, 

some evidence has linked elevated F2-IsoP to risk of CVD and certain cancers(1–3,5). Urinary 

F2-IsoP are a particularly stable biomarker of oxidative stress, as they are not subject to 

autoxidation during sample collection and storage, unlike blood plasma measures(29). 

Furthermore, while local renal production may affect the excretion of unmetabolized F2-IsoP 

in human urine, the metabolised form of 15-F2t-isoprostane – 2,3-dinor-5,6-dihydro-15-F2t-

Anderson et al. Page 2

Br J Nutr. Author manuscript; available in PMC 2017 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



isoprostane (15-F2t-IsoP-M) – is unaffected by renal production(30). However, most previous 

studies on F2-isoprostanes and lifestyle factors have relied exclusively on unmetabolized F2-

IsoP. Therefore, the purpose of this cross-sectional study was to evaluate associations of both 

F2-IsoP and 15-F2t-IsoP-M with physical activity, alcohol consumption, and intakes of 

dietary fats, fruits and vegetables, and antioxidant nutrients among healthy, premenopausal 

women.

Methods

Participants included in this analysis were controls of a case–control study on incident breast 

cancer nested within the Sister Study – a prospective observational cohort of US women 

designed to identify risk factors for breast cancer. The objective of the nested case–control 

study was to evaluate novel biomarkers of premenopausal breast cancer risk. Women aged 

35–74 years from the USA and Puerto Rico were recruited for the Sister Study from 2003 to 

2009 through a national advertising campaign and a network of breast cancer professionals 

and recruitment volunteers. All of them had a sister who had been diagnosed with breast 

cancer, but were themselves free of breast cancer at enrolment. All participants provided 

their informed written consent. The study was approved by the Institutional Review Board of 

the National Institute of Environmental Health Sciences, the National Institutes of Health 

and the Copernicus Group.

Population for analysis

Women were eligible to be included in the control sample if they were aged 35–54 years, 

premenopausal, had at least one intact ovary and had a urine sample collected at enrolment. 

Those who reported one or more menstrual cycles in the previous 12 months were 

categorised as premenopausal, as were women aged 54 years and younger whose only 

reason for not experiencing menses was hysterectomy (without bilateral oophorectomy). A 

total of 912 women, who did not have a breast cancer diagnosis as of 31 December 2012, 

had urine samples analysed for F2-isoprostanes and were eligible for this analysis.

Measurement of F2-isoprostanes and 2,3-dinor-5, 6-dihydro-15-F2t-isoprostane

At enrolment, participants provided samples of first morning urine during a home visit by 

the study personnel. Reliability studies have demonstrated that a single morning sample 

adequately reflects daily excretion of F2-IsoP, with concentrations similar to those obtained 

from a 24-h urine sample(31). Urinary F2-IsoP and 15-F2t-IsoP-M were measured using GC/

negative ion chemical ionisation MS at the Eicosanoid Core Laboratory at Vanderbilt 

University Medical Center. The methods used have been published in detail 

previously (32–34). The CV for quality control duplicates were 16·0% for F2-IsoP and 12·5% 

for 15-F2t-IsoP-M. Reported F2-IsoP and 15-F2t-IsoP-M values were adjusted for creatinine 

concentrations (ng/mg of creatinine) to correct for urine diluteness(35).

Questionnaire measures

All dietary and nutrient intakes were ascertained using the Block 98 FFQ , completed at 

enrolment, and refer to average daily intakes in the previous 12 months. Total dietary 

carotenoids were calculated as the sum of β-carotene, α-carotene, lycopene, lutein + 
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zeaxanthin and cryptoxanthin. Supplement use information was also ascertained from the 

FFQ and was available for vitamin E, vitamin C, β-carotene, vitamin A, Se and Zn. Scores 

on the Healthy Eating Index: 1999–2000, a measure of diet quality developed by the US 

Department of Agriculture(37), were also calculated from the FFQ.

Physical activity during the previous 12 months was self-reported via a questionnaire 

completed at enrolment. Participants were asked to report the number of hours per week 

they spent engaging in specific activities, and weekly energy expenditures were calculated 

using the metabolic equivalent (MET) values for each activity as listed in established 

guidelines(38). Total physical activity was estimated by summing the MET-h/week of sports 

or exercise sessions and daily activities. Alcohol consumption was also self-reported on 

enrolment through questionnaires. Participants reported their average number of drinks per 

week. This value was multiplied by 14 (the number of grams of alcohol in a standard drink) 

and used to calculate an average daily intake of alcohol in grams. Current height and weight, 

used to calculate BMI (kg/m2), were measured during home visits by trained study 

personnel at enrolment. Information regarding socio-demographic factors and smoking 

status was collected at enrolment using questionnaires. We excluded women who were 

missing an FFQ (n 18) or who had implausible values for energy intake (<2092 or >20 920 

kJ/d (<500 or >5000 kcal/d; n 6)).

Statistical analyses

Frequencies and percentages were used to describe categorical variables. Medians and 

quartiles were calculated for continuous variables including dietary intakes, physical activity 

and alcohol consumption.

Values of F2-IsoP and 15-F2t-IsoP-M were highly skewed, and thus were log-transformed to 

approximate a normal distribution. Using generalised linear models, geometric means of F2-

IsoP and 15-F2t-IsoP-M were calculated by quartiles of all lifestyle variables. Models were 

adjusted for variables considered a priori as potential confounders. For all exposure 

variables, geometric means were adjusted for age (continuous), BMI (continuous), race/

ethnicity (non-Hispanic white, non-Hispanic black, Hispanic, other), physical activity (total 

MET-h/week, continuous), household income (<$20 000, $20 000–$49999, $50 000–

$99999, $100 000–$200 000 and >$200 000) and current smoking status (yes/no). Means 

according to antioxidant nutrients were further adjusted for total energy intake (kJ/d (kcal/d) 

continuous), and values according to physical activity, alcohol intake, fruit and vegetable 

consumption, dietary fats intake and Healthy Eating Index scores were further adjusted for 

use of any multivitamins and/or supplements (yes/no). For physical activity, alcohol intake 

and dietary fats, geometric means were additionally adjusted for fruit and vegetable servings 

per day (continuous). Linear regression models, with continuous, log-transformed F2-IsoP or 

15-F2t-IsoP-M as the dependent variable, were used to evaluate trends. For antioxidant 

nutrients, we hypothesised that relationships would be approximately linear within the range 

of values consumed by women in this population. However, to evaluate potential curvilinear 

trends, we visually assessed scatterplots of all exposures plotted individually against F2-IsoP 

and 15-F2t-IsoP-M. In our assessment, no exposure–outcome relationships appeared to be U-

shaped. Thus, we proceeded with the evaluation of linear trends using linear regression 
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models. To avoid problems of collinearity in adjusted regression models, related dietary 

variables were evaluated as covariates individually, rather than in combination.

For analyses of vitamin E, vitamin C, β-carotene, vitamin A, Se and Zn (nutrients for which 

we had available information on supplement use), we evaluated associations for dietary 

intakes alone, as well as for combined intakes from both dietary and supplemental sources. 

In the dietary intake analyses of these nutrients, we performed sensitivity analyses excluding 

women who reported taking a supplement for that particular nutrient.

In further sensitivity analyses, we excluded women who were current smokers at enrolment. 

We also performed stratified analyses by BMI (18·5–29·9 v. 30·0 + kg/m2) to investigate 

potential effect modification. Tests for statistical interaction were conducted by including 

cross-product interaction terms in regression models.

The number of missing values was <5 % for all variables, and therefore missing values were 

left as missing in all analyses. Two-sided P values < 0·05 were considered to be statistically 

significant. All statistical analyses were conducted with Sister Study Data Release 4.0 using 

SAS 9.4 (SAS Institute).

Results

The geometric mean concentrations of F2-IsoP and 15-F2t-IsoP-M were 1·44 (SD 0·75) and 

0·71 (SD 0·32)ng/mgCr, respectively. Log-transformed F2-IsoP and 15-F2t-IsoP-M values 

were highly correlated (r 0·58, P < 0·001). Both F2-IsoP and 15-F2t-IsoP-M were positively 

associated with BMI (F2-IsoP: r 0·25, P < 0·001; 15-F2t-IsoP-M: r 0·37, P < 0·001). 

Participants were predominately non-Hispanic white (88%) with a median age of 47 years 

and a median BMI of 25·6 kg/m2 (Table 1).

After multivariable adjustment, total MET-h/week of physical activity was inversely 

associated with F2-IsoP (Ptrend = 0·003) (Table 2). A weaker, non-significant trend was 

observed for 15-F2t-IsoP-M. Although alcohol intake appeared to be inversely associated 

with concentrations of F2-IsoP, this association was not statistically significant. Healthy 

Eating Index scores were not significantly associated with either F2-IsoP or 15-F2t-IsoP-M 

in adjusted models. No significant relationships were observed between F2-IsoP or 15-F2t-

IsoP-M and total fat, total dietary n-6 fatty acids, total dietary n-3 fatty acids, SFA, MUFA, 

PUFA or total dietary short-chain n-3 fatty acids. Intake of total dietary long-chain n-3 fatty 

acids was inversely associated with 15-F2t-IsoP-M (Ptrend = 0·03), but was marginally 

associated with F2-IsoP (Ptrend = 0·06). Higher intake of trans fat was associated with higher 

F2-IsoP (Ptrend< 0·001) and 15-F2t-IsoP-M (Ptrend = 0·002).

Although fruit consumption was inversely associated with F2-IsoP only (Ptrend = 0·04), 

vegetable consumption was inversely associated with both F2-IsoP (Ptrend< 0·001) and 15-

F2t-IsoP-M (Ptrend < 0·001) (Table 3). Inverse associations were observed between vitamin E 

and both F2-IsoP (Ptrend < 0·001) and 15-F2t-IsoP-M (Ptrend < 0·001). Higher vitamin C 

intake was associated with lower F2-IsoP (Ptrend = 0·01), with a similar, although non-

significant, association with 15-F2t-IsoP-M (Ptrend = 0·1). β-Carotene was inversely 

associated with F2-IsoP (Ptrend< 0·001) and 15-F2t-IsoP-M (Ptrend< 0·001). Similar 
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associations were observed for vitamin A with both F2-IsoP (Ptrend< 0·001) and 15-F2t-IsoP-

M (Ptrend< 0·001). Se intake was inversely associated with F2-IsoP (Ptrend< 0·001) and 15-

F2t-IsoP-M (Ptrend < 0·001). Higher Zn intake was associated with lower F2-IsoP (Ptrend = 

0·01) and marginally associated with lower 15-F2t-IsoP-M (Ptrend = 0·07). Strong inverse 

associations were found between lutein + zeaxanthin and both F2-IsoP (Ptrend< 0·001) and 

15-F2t-IsoP-M (Ptrend< 0·001), although lycopene was not associated with either F2-IsoP or 

15-F2t-IsoP-M. α-Carotene was inversely associated with F2-IsoP (Ptrend = 0·03) but not 

significantly associated with 15-F2t-IsoP-M (Ptrend = 0·5). Cryptoxanthin was not associated 

with F2-IsoP or 15-F2t-IsoP-M. Total carotenoid intake was strongly associated with both 

F2-IsoP (Ptrend< 0·001) and 15-F2t-IsoP-M (Ptrend< 0·001). For dietary vitamin E, vitamin C, 

β-carotene, vitamin A, Se and Zn, patterns remained similar when supplement users for 

these nutrients were excluded (data not shown).

Associations of F2-IsoP and 15-F2t-IsoP-M with combined dietary and supplemental intakes 

of vitamin E, vitamin C, β-carotene, vitamin A, Se and Zn were generally similar to those 

observed for dietary intakes of these nutrients alone (online Supplementary Table S1). 

However, associations with combined dietary and supplemental sources appeared to be 

somewhat weaker for vitamin E and stronger for vitamin C and Zn, compared with 

associations with dietary intakes alone.

All trends remained similar when analyses were restricted to non-smokers (data not shown). 

In stratified analyses, patterns were largely similar between those with a BMI of 18·5–29·9 

kg/m2 and those with a BMI of 30·0 kg/m2 or greater. Although inverse associations 

between F2-IsoP (Ptrend = 0·002) and 15-F2t-IsoP-M (Ptrend = 0·03) and physical activity 

were only apparent among women with a BMI of 18·5–29·9 kg/m2, the interaction test was 

not statistically significant (F2-IsoP: Pinteraction = 0·9; 15-F2t-IsoP-M: Pinteraction = 0·4; 

online Supplementary Table S2). Likewise, Zn intake was inversely associated with F2-IsoP 

(Ptrend = 0·008) and 15-F2t-IsoP-M (Ptrend = 0·03) only among women with a BMI of 18·5–

29·9 kg/m2, although the interactions were not significant (F2-IsoP: Pinteraction = 0·3; 15-F2t-

IsoP-M: Pinteraction = 0·4). Fruit intake was inversely associated with F2IsoP only among 

women with a BMI of 18·5–29·9kg/m2 (Ptrend = 0·009). However, the interaction test did not 

indicate a significant difference according to BMI (Pinteraction =0·4; online Supplementary 

Table S3).

Discussion

In this study, we found that oxidative stress, as measured by F2-isoprostane and its 

metabolite, was associated with a number of dietary and lifestyle factors. Lower oxidative 

stress was observed with greater intake of fruits and vegetables, antioxidant nutrients and 

long-chain n-3 fatty acids, whereas higher oxidative stress was found among women with a 

greater intake of trans fats. In addition, our findings suggest a possible inverse relationship 

between total physical activity and oxidative stress. Associations were similar for non-obese 

and obese women and remained largely unchanged when current smokers were excluded.

Individual nutrients most strongly associated with both F2-IsoP and 15-F2t-IsoP-M in the 

present study included vitamin E and the carotenoids β-carotene and lutein + zeaxanthin – 
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findings consistent with the antioxidant properties of these compounds. Vitamin E, or α-

tocopherol, is a lipid-soluble, chain-breaking antioxidant, whereas carotenoids are lipid-

soluble compounds that scavenge singlet oxygen(16). Other studies of F2-IsoP have observed 

similar strong associations with these antioxidant nutrients. A recent cross-sectional study 

among healthy, middle-aged men found that β-carotene and lutein + zeaxanthin were the 

carotenoids with the strongest inverse associations with urinary F2-IsoP(14). The results from 

the Study of Women’s Health Across the Nation (SWAN) showed dietary intakes of vitamin 

E, lutein and β-carotene, as well as vitamin A and vitamin C, to be negatively correlated 

with F2-IsoP(13). The relative strengths of associations with the antioxidant nutrients we 

evaluated may be partly explained by their efficiency in reacting with various free radicals 

and pro-oxidants and their ability to interact with other anti-oxidants(10,39). Tocopherols 

(vitamin E), for example, are the most abundant and efficient scavengers of peroxyl radicals 

in biological membranes, and their antioxidant activity is supported by their interaction with 

vitamin C(10).

Our findings regarding antioxidant nutrients likely explain, in large part, the inverse 

associations observed for fruits and vegetables, foods rich in carotenoids and other 

antioxidants. Although adjustment for multivitamin/supplement use, physical activity, BMI 

and other confounding factors attenuated associations with fruit intake in our sample, this 

was not the case for vegetable intake. A stronger trend for vegetables than for fruits in 

relation to urinary F2-IsoP has been observed previously(13), and may be explained by the 

specific types of fruits and vegetables commonly consumed among women of this age 

group, or by the greater range of vegetable servings consumed in this population (0–15), 

relative to fruit servings (0–5).

We also found that dietary Zn intake was inversely associated with F2-IsoP, with a similar 

but non-significant association with 15-F2t-IsoP-M. A similar association with F2-IsoP was 

found among participants in SWAN(13). The antioxidant activity of Zn, a ubiquitous trace 

element in the body, is proposed to occur through several different mechanisms, one of 

which involves its role as a cofactor for superoxide dismutase, an important component of 

antioxidant defence(40). In our sample, associations between F2-IsoP and 15-F2t-IsoP-M and 

Zn appeared somewhat stronger for combined intake of Zn from both dietary and 

supplemental sources, compared with associations with dietary Zn intake alone. Yet, some 

trials have suggested that Zn supplementation has little effect on markers of lipid 

peroxidation, such as F2-IsoP(41,42). Human studies remain scarce, particularly in healthy 

populations, and further investigation is needed to understand the role of Zn in oxidative 

stress reduction.

In our sample, a higher intake of dietary long-chain n-3 fatty acids, which has been 

associated with a lower risk of cardiovascular events(43), was significantly predictive of 

lower 15-F2t-IsoP-M and marginally predictive of lower F2-IsoP. Supplementation with EPA 

and DHA, two long-chain n-3 fatty acids found in fatty fish, has led to decreases in F2-IsoP 

in some trials(21,44–46) and has had no effect in others(47,48), contrary to previous concerns 

that higher overall intake of unsaturated fatty acids would increase lipid peroxidation(21). 

Mas et al.(21) suggest that the reduction in F2-IsoP is related to the anti-inflammatory effects 

of n-3 fatty acids. Arachidonic acid, from which F2-isoprostanes are derived, is a primary 
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component of inflammatory cell membranes, but may be partially replaced in membranes by 

EPA, thereby leading to decreased production of arachidonic acid-derived products.

We observed strong positive associations between trans fat intake and both F2-IsoP and 15-

F2t-IsoP-M concentrations. Trans fats are PUFA, which occur naturally in ruminant fats, but 

are also formed during the hydrogenation of vegetable oils in industrial processes(49). Some 

trials have found higher urinary F2-IsoP among participants given trans-fatty acid supple-

mentation(49,50), and it has been suggested that an increase in lipid peroxidation may 

partially account for the relationship between trans fat and CHD risk(50). Among women 

enrolled in the SWAN study, Tomey et al.(13) reported an increase in urinary F2-IsoP with 

higher trans fat intake. However, while their results also suggested positive associations with 

total fat, SFA, linoleic acid (a PUFA) and oleic acid (a MUFA), we observed no consistent 

relationships between urinary F2-IsoP and the majority of dietary fat subgroups that we 

evaluated. Although human investigations remain limited, some evidence from intervention 

studies has also suggested that F2-IsoP excretion may not be strongly affected by the overall 

fat content of the diet(51–54). Future studies are needed to evaluate associations between 

specific dietary fat subgroups and oxidative stress as assessed by F2-IsoP.

With adjustments for confounders such as age, BMI and daily intake of fruits and 

vegetables, total physical activity was inversely associated with F2-IsoP, with a similar but 

non-significant trend for 15-F2t-IsoP-M. To avoid problems of collinearity, we chose not to 

control for multiple related dietary factors in the same model. Thus, adjustment only for 

fruits and vegetables may be insufficient to account for confounding by diet, given strong 

correlations between most dietary intakes and total physical activity in our sample. Although 

our findings are consistent with several aerobic exercise trials among women(55–58), our 

interest was in the combination of activity from both exercise and daily activities, and thus 

the results may not be directly comparable. Habitual physical activity is thought to 

potentially decrease oxidative stress through adaptive processes, in which levels of 

antioxidant enzymes and water- and lipid-soluble antioxidants may increase(59). However, 

observational studies of habitual physical activity and F2-isoprostanes among 

premenopausal women have been conflicting(60,61), and further investigation is warranted.

The evaluation of 15-F2t-IsoP-M, a biomarker used in a few previous studies, is a unique 

strength of this study. In addition, owing to extensive baseline data collection in the Sister 

Study, we were able to control for the major factors known to affect oxidative stress. 

However, there are some limitations including the reliance on self-reported measures of diet, 

alcohol consumption and physical activity. Measurement error is inherent to the FFQ, and 

under- or over-reporting of physical activity and alcohol consumption may be a concern. 

Although more objective measures may be preferable, they would likely be infeasible in a 

sample as large as ours. Furthermore, the CV for the assays of F2-IsoP and 15-F2t-IsoP-M 

were somewhat high, suggesting caution in the interpretation of our results. Participants in 

this study were largely homogeneous with respect to demographic characteristics, limiting 

our ability to generalise to males or non-white populations. Given the large number of 

associations that we evaluated, there is also a risk of false-positive results. However, all tests 

were based on a priori hypotheses. Finally, we were unable to address differences in F2-IsoP 

concentrations by intensity of physical activity or type of alcohol consumption. The effects 
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of long-term, moderate-intensity physical activity on oxidative stress may differ from those 

of acute, vigorous activity(23,24), whereas the effects of red wine may differ from those of 

other alcoholic beverages due to its antioxidant content(62,63). Evaluation of such 

associations could further our understanding of the influence of lifestyle factors on oxidative 

stress.

In summary, the results of this study suggest that physical activity and specific dietary 

factors, such as antioxidant nutrients and long-chain n-3 fatty acids, may be inversely 

associated with oxidative stress among premenopausal women. Our findings also suggest 

that higher intake of trans fats may be associated with higher levels of oxidative stress. 

Future studies are warranted to evaluate additional biomarkers of oxidative stress in more 

diverse populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Participant characteristics(Numbers and percentages; medians and interquartile ranges (IQR); n 888)

n %

Age (years)

  Median 47

  IQR 44, 50

BMI (kg/m2)

  Median 25·6

  IQR 22·5, 30·4

Current smoker 75 8

Race/ethnicity

  Non-Hispanic white 778 88

  Non-Hispanic black 55 6

  Hispanic 34 4

  Other 21 2

Household income

  <$20 000 14 2

  $20 000–$49 000 129 15

  $50 000–$99 999 364 42

  $100 000–$200 000 273 31

  >$200 000 87 10

Total energy intake (kJ/d)

  Median 63940

  IQR 5177·7, 8230·3

Total energy intake (kcal/d)

  Median 1528·2

  IQR 1237·5, 1967·1

Supplement use

  Vitamin C 189 21

  Vitamin E 163 18

  β-Carotene 22 2

  Vitamin A 25 3

  Se 29 3

  Zn 68 8
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