28 research outputs found

    Linking sentence production and comprehension: The neural mechanisms underlying production and comprehension control processes

    Get PDF
    This thesis investigated the relationship between sentence production and comprehension. A combination of behavioural and neuroimaging techniques were used to examine the extent to which sentence production and comprehension engage common or distinct mechanisms, with specific focus on the processes engaged by semantic/syntactic competition. Behavioural studies in Chapter 2 indicated that high-competition cases were more difficult to understand and produce than low-competition cases, and that difficulty varied as a function of the number of alternative associations entertained during performance in both tasks. In Chapter 3, an fMRI study indicated that production and comprehension shared a common competition mechanism within left inferior frontal gyrus (LIFG). However, they engage distinctive networks that interact with LIFG, with production eliciting a larger network including areas involved in sentence planning and memory retrieval. Further asymmetries across tasks were revealed in Chapter 4, in which behavioural results and neural networks were compared across adults and adolescents. This study also demonstrated the occurrence of shifts in the neural networks involved in competition resolution throughout development, thereby providing a strong link between poor behavioural performance and the underdevelopment of pre-frontal inhibitory mechanisms in adolescents. Chapter 5 used an improved experimental paradigm from that in Chapters 3 and 4. The results showed that production elicits more activity than comprehension in the dorsal language route thus confirming the engagement of task-specific control processes. Interestingly, this study also revealed a common area of LIFG involved in both tasks, but also differences within LIFG, suggesting the possibility of task-specific circuitry. Together, the findings suggest that production and comprehension share fronto-temporal areas that store and manage abstract linguistic associations between words and structures. However, they differ in the manner in which linguistic information is used, as is evident by the recruitment of distinct networks. Implications for models of language processing are discussed

    Similarity-based competition in relative clause production and comprehension

    Get PDF
    This work investigates the role of semantic similarity in sentence production and comprehension. Previous research suggests that animacy and conceptual similarity of the noun concepts within complex descriptive phrases modulate structural preferences in production, and processing cost in comprehension. For example, animate-head phrases such as the girl that the boy is pulling are rare in production and more difficult to understand in comprehension. In contrast, phrases with passive clauses such as the girl being pulled by the boy are commonly produced and more easily understood, as are inanimate-head structures such as the truck the boy is pulling. In three picture-based studies, we examined the mechanisms underlying semantic similarity effects in producing and comprehending these phrases. Study 1 investigated structural preferences in production, whereas Study 2 investigated processing cost in comprehension. Study 3 used eye-tracking to examine the time-course of production processes. The results showed that semantic similarity elicited competition during phrase planning, influenced the choice of syntactic structure in production, and engendered comprehension difficulty in animate-head active configurations. Structural preferences, fixation probabilities reflecting production planning processes and comprehension cost significantly correlated with measures of conceptual similarity across the three studies. We argue that similarity-based competition modulates sentence production and comprehension processes when verbs are planned or interpreted, i.e., when event-based semantic or syntactic roles are determined. In addition to task-specific processes, we suggest that a similar and shared semantic competition mechanism underlies both production and comprehension, a view consistent with existing evidence for common brain regions recruited in both tasks

    Competitive mechanisms in sentence processing : Common and distinct production and reading comprehension networks linked to the prefrontal cortex

    Get PDF
    Despite much interest in language production and comprehension mechanisms, little is known about the relationship between the two. Previous research suggests that linguistic knowledge is shared across these tasks and that the left inferior frontal gyrus (LIFG) may be commonly recruited. However, it remains unclear the extent to which production and comprehension share competition mechanisms. Here we investigate this issue and specifically examine competition in determining the event roles in a sentence (agent or affected participant). We used both behavioral and fMRI methods and compared the reading and production of high- and low-competition sentences, specifically targeting LIFG. We found that activity in pars opercularis (PO), independently identified by a competition-driven localizer, was modulated by competition in both tasks. Psychophysiological interaction analyses seeded in PO revealed task-specific networks: In comprehension, PO only interacted with the posterior temporal lobe, whereas in production, it interacted with a large network including hippocampal, posterior temporal, medial frontal and subcortical structures. Production and comprehension therefore recruit partially distinct functional networks but share competitive processes within fronto-temporal regions. We argue that these common regions store long-term linguistic associations and compute their higher-order contingencies, but competition in production ignites a larger neural network implementing planning, as required by task demands

    Controlled semantic cognition relies upon dynamic and flexible interactions between the executive 'semantic control' and hub-and-spoke 'semantic representation' systems.

    Get PDF
    Built upon a wealth of neuroimaging, neurostimulation, and neuropsychology data, a recent proposal set forth a framework termed controlled semantic cognition (CSC) to account for how the brain underpins the ability to flexibly use semantic knowledge (Lambon Ralph et al., 2017; Nature Reviews Neuroscience). In CSC, the 'semantic control' system, underpinned predominantly by the prefrontal cortex, dynamically monitors and modulates the 'semantic representation' system that consists of a 'hub' (anterior temporal lobe, ATL) and multiple 'spokes' (modality-specific areas). CSC predicts that unfamiliar and exacting semantic tasks should intensify communication between the 'control' and 'representation' systems, relative to familiar and less taxing tasks. In the present study, we used functional magnetic resonance imaging (fMRI) to test this hypothesis. Participants paired unrelated concepts by canonical colours (a less accustomed task - e.g., pairing ketchup with fire-extinguishers due to both being red) or paired well-related concepts by semantic relationship (a typical task - e.g., ketchup is related to mustard). We found the 'control' system was more engaged by atypical than typical pairing. While both tasks activated the ATL 'hub', colour pairing additionally involved occipitotemporal 'spoke' regions abutting areas of hue perception. Furthermore, we uncovered a gradient along the ventral temporal cortex, transitioning from the caudal 'spoke' zones preferring canonical colour processing to the rostral 'hub' zones preferring semantic relationship. Functional connectivity also differed between the tasks: Compared with semantic pairing, colour pairing relied more upon the inferior frontal gyrus, a key node of the control system, driving enhanced connectivity with occipitotemporal 'spoke'. Together, our findings characterise the interaction within the neural architecture of semantic cognition - the control system dynamically heightens its connectivity with relevant components of the representation system, in response to different semantic contents and difficulty levels.This research was funded by an MRC programme grant to MALR (MR/J004146/1), a Sir Henry Wellcome Fellowship (201381/Z/16/Z) to RC, and a Stepping Stone Award (097820; supported by the Welcome Institutional Strategic Support Fund) to RC

    A middle ground where executive control meets semantics : the neural substrates of semantic control are topographically sandwiched between the multiple-demand and default-mode systems

    Get PDF
    Semantic control is the capability to operate on meaningful representations, selectively focusing on certain aspects of meaning while purposefully ignoring other aspects based on one’s behavioral aim. This ability is especially vital for comprehending figurative/ambiguous language. It remains unclear why and how regions involved in semantic control seem reliably juxtaposed alongside other functionally specialized regions in the association cortex, prompting speculation about the relationship between topography and function. We investigated this issue by characterizing how semantic control regions topographically relate to the default-mode network (associated with memory and abstract cognition) and multiple-demand network (associated with executive control). Topographically, we established that semantic control areas were sandwiched by the default-mode and multi-demand networks, forming an orderly arrangement observed both at the individual and group level. Functionally, semantic control regions exhibited “hybrid” responses, fusing generic preferences for cognitively demanding operation (multiple-demand) and for meaningful representations (default-mode) into a domain-specific preference for difficult operation on meaningful representations. When projected onto the principal gradient of human connectome, the neural activity of semantic control showed a robustly dissociable trajectory from visuospatial control, implying different roles in the functional transition from sensation to cognition. We discuss why the hybrid functional profile of semantic control regions might result from their intermediate topographical positions on the cortex

    Establishing task- and modality-dependent dissociations between the semantic and default mode networks

    Get PDF
    The default mode network (DMN) and semantic network (SN) are two of the most extensively studied systems, and both are increasingly used as clinical biomarkers in neurological studies. There are strong theoretical reasons to assume a relationship between the networks, as well as anatomical evidence that they might rely on overlapping cortical regions, such as the anterior temporal lobe (ATL) or angular gyrus (AG). Despite these strong motivations, the relationship between the two systems has received minimal attention. We directly compared the SN and DMN using a large (n = 69) distortion-corrected functional MRI (fMRI) dataset, spanning a range of semantic and nonsemantic tasks that varied input modality. The results showed that both networks fractionate depending on the semantic nature of the task, stimulus type, modality, and task difficulty. Furthermore, despite recent claims that both AG and ATL are semantic hubs, the two areas responded very differently, with results supporting the role of ATL, but not AG, in semantic representation. Specifically, the left ATL was positively activated for all semantic tasks, but deactivated during nonsemantic task performance. In contrast, the left AG was deactivated for all tasks, with the level of deactivation related to task difficulty. Thus, ATL and AG do not share a common interest in semantic tasks, but, rather, a common “disinterest” in nonsemantic tasks. The implications for the variability in the DMN, its cognitive coherence, and interpretation of resting-state fMRI data are discussed

    Time for a quick word? The striking benefits of training speed and accuracy of word retrieval in post-stroke aphasia

    Get PDF
    One-third of stroke survivors experience deficits in word retrieval as a core characteristic of their aphasia, which is frustrating, socially limiting and disabling for their professional and everyday lives. The, as yet, undiscovered ‘holy grail’ of clinical practice is to establish a treatment that not only improves item naming, but also generalizes to patients’ connected speech. Speech production in healthy participants is a remarkable feat of cognitive processing being both rapid (at least 120 words per minute) and accurate (∼one error per 1000 words). Accordingly, we tested the hypothesis that word-finding treatment will only be successful and generalize to connected speech if word retrieval is both accurate and quick. This study compared a novel combined speed- and accuracy-focused intervention—‘repeated, increasingly-speeded production’—to standard accuracy-focused treatment. Both treatments were evaluated for naming, connected speech outcomes, and related to participants’ neuropsychological and lesion profiles. Twenty participants with post-stroke chronic aphasia of varying severity and subtype took part in 12 computer-based treatment sessions over 6 weeks. Four carefully matched word sets were randomly allocated either to the speed- and accuracy-focused treatment, standard accuracy-only treatment, or untreated (two control sets). In the standard treatment, sound-based naming cues facilitated naming accuracy. The speed- and accuracy-focused treatment encouraged naming to become gradually quicker, aiming towards the naming time of age-matched controls. The novel treatment was significantly more effective in improving and maintaining picture naming accuracy and speed (reduced latencies). Generalization of treated vocabulary to connected speech was significantly increased for all items relative to the baseline. The speed- and accuracy-focused treatment generated substantial and significantly greater deployment of targeted items in connected speech. These gains were maintained at 1-month post-intervention. There was a significant negative correlation for the speed- and accuracy-focused treatment between the patients’ phonological scores and the magnitude of the therapy effect, which may have reflected the fact that the substantial beneficial effect of the novel treatment generated a ceiling effect in the milder patients. Maintenance of the speed- and accuracy-treatment effect correlated positively with executive skills. The neural correlate analyses revealed that participants with the greatest damage to the posterior superior temporal gyrus extending into the white matter of the inferior longitudinal fasciculus, showed the greatest speed- and accuracy treatment benefit. The novel treatment was well tolerated by participants across the range of severity and aphasia subtype, indicating that this type of intervention has considerable clinical utility and broad applicability

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials
    corecore