27 research outputs found

    Polymorphisms in ACE, ACE2, AGTR1 genes and severity of COVID-19 disease.

    Get PDF
    post-print651 K

    Long-term reliability of the phospholamban (PLN) p.(Arg14del) risk model in predicting major ventricular arrhythmia:a landmark study

    Get PDF
    Aims:Recently, a genetic variant-specific prediction model for phospholamban (PLN) p.(Arg14del)-positive individuals was developed to predict individual major ventricular arrhythmia (VA) risk to support decision-making for primary prevention implantable cardioverter defibrillator (ICD) implantation. This model predicts major VA risk from baseline data, but iterative evaluation of major VA risk may be warranted considering that the risk factors for major VA are progressive. Our aim is to evaluate the diagnostic performance of the PLN p.(Arg14del) risk model at 3-year follow-up. Methods:We performed a landmark analysis 3 years after presentation and selected only patients with no prior major VA. Data were and results collected of 268 PLN p.(Arg14del)-positive subjects, aged 43.5 ± 16.3 years, 38.9% male. After the 3 years landmark, subjects had a mean follow-up of 4.0 years (± 3.5 years) and 28 (10%) subjects experienced major VA with an annual event rate of 2.6% [95% confidence interval (CI) 1.6–3.6], defined as sustained VA, appropriate ICD intervention, or (aborted) sudden cardiac death. The PLN p.(Arg14del) risk score yielded good discrimination in the 3 years landmark cohort with a C-statistic of 0.83 (95% CI 0.79–0.87) and calibration slope of 0.97. Conclusion:The PLN p.(Arg14del) risk model has sustained good model performance up to 3 years follow-up in PLN p.(Arg14del)positive subjects with no history of major VA. It may therefore be used to support decision-making for primary prevention ICD implantation not merely at presentation but also up to at least 3 years of follow-up.</p

    Long-term reliability of the phospholamban (PLN) p.(Arg14del) risk model in predicting major ventricular arrhythmia:a landmark study

    Get PDF
    Aims:Recently, a genetic variant-specific prediction model for phospholamban (PLN) p.(Arg14del)-positive individuals was developed to predict individual major ventricular arrhythmia (VA) risk to support decision-making for primary prevention implantable cardioverter defibrillator (ICD) implantation. This model predicts major VA risk from baseline data, but iterative evaluation of major VA risk may be warranted considering that the risk factors for major VA are progressive. Our aim is to evaluate the diagnostic performance of the PLN p.(Arg14del) risk model at 3-year follow-up. Methods:We performed a landmark analysis 3 years after presentation and selected only patients with no prior major VA. Data were and results collected of 268 PLN p.(Arg14del)-positive subjects, aged 43.5 ± 16.3 years, 38.9% male. After the 3 years landmark, subjects had a mean follow-up of 4.0 years (± 3.5 years) and 28 (10%) subjects experienced major VA with an annual event rate of 2.6% [95% confidence interval (CI) 1.6–3.6], defined as sustained VA, appropriate ICD intervention, or (aborted) sudden cardiac death. The PLN p.(Arg14del) risk score yielded good discrimination in the 3 years landmark cohort with a C-statistic of 0.83 (95% CI 0.79–0.87) and calibration slope of 0.97. Conclusion:The PLN p.(Arg14del) risk model has sustained good model performance up to 3 years follow-up in PLN p.(Arg14del)positive subjects with no history of major VA. It may therefore be used to support decision-making for primary prevention ICD implantation not merely at presentation but also up to at least 3 years of follow-up.</p

    Truncating FLNC Mutations Are Associated With High-Risk Dilated and Arrhythmogenic Cardiomyopathies

    Get PDF
    BACKGROUND: Filamin C (encoded by the FLNC gene) is essential for sarcomere attachment to the plasmatic membrane. FLNC mutations have been associated with myofibrillar myopathies, and cardiac involvement has been reported in some carriers. Accordingly, since 2012, the authors have included FLNC in the genetic screening of patients with inherited cardiomyopathies and sudden death. OBJECTIVES: The aim of this study was to demonstrate the association between truncating mutations in FLNC and the development of high-risk dilated and arrhythmogenic cardiomyopathies. METHODS: FLNC was studied using next-generation sequencing in 2,877 patients with inherited cardiovascular diseases. A characteristic phenotype was identified in probands with truncating mutations in FLNC. Clinical and genetic evaluation of 28 affected families was performed. Localization of filamin C in cardiac tissue was analyzed in patients with truncating FLNC mutations using immunohistochemistry. RESULTS: Twenty-three truncating mutations were identified in 28 probands previously diagnosed with dilated, arrhythmogenic, or restrictive cardiomyopathies. Truncating FLNC mutations were absent in patients with other phenotypes, including 1,078 patients with hypertrophic cardiomyopathy. Fifty-four mutation carriers were identified among 121 screened relatives. The phenotype consisted of left ventricular dilation (68%), systolic dysfunction (46%), and myocardial fibrosis (67%); inferolateral negative T waves and low QRS voltages on electrocardiography (33%); ventricular arrhythmias (82%); and frequent sudden cardiac death (40 cases in 21 of 28 families). Clinical skeletal myopathy was not observed. Penetrance was >97% in carriers older than 40 years. Truncating mutations in FLNC cosegregated with this phenotype with a dominant inheritance pattern (combined logarithm of the odds score: 9.5). Immunohistochemical staining of myocardial tissue showed no abnormal filamin C aggregates in patients with truncating FLNC mutations. CONCLUSIONS: Truncating mutations in FLNC caused an overlapping phenotype of dilated and left-dominant arrhythmogenic cardiomyopathies complicated by frequent premature sudden death. Prompt implantation of a cardiac defibrillator should be considered in affected patients harboring truncating mutations in FLNC.Instituto de Salud Carlos III [PI11/0699, PI14/0967, PI14/01477, RD012/0042/0029, RD012/0042/0049, RD012/0042/0066, RD12/0042/0069]; Spanish Ministry of Economy and Competitiveness [SAF2015-71863-REDT]; Plan Nacional de I+D+I; Plan Estatalde I+D+I, European Regional Development Fund; Health in Code SLS

    Prediction of ventricular arrhythmia in phospholamban p.Arg14del mutation carriers-reaching the frontiers of individual risk prediction

    Get PDF
    AIMS: This study aims to improve risk stratification for primary prevention implantable cardioverter defibrillator (ICD) implantation by developing a new mutation-specific prediction model for malignant ventricular arrhythmia (VA) in phospholamban (PLN) p.Arg14del mutation carriers. The proposed model is compared to an existing PLN risk model. METHODS AND RESULTS: Data were collected from PLN p.Arg14del mutation carriers with no history of malignant VA at baseline, identified between 2009 and 2020. Malignant VA was defined as sustained VA, appropriate ICD intervention, or (aborted) sudden cardiac death. A prediction model was developed using Cox regression. The study cohort consisted of 679 PLN p.Arg14del mutation carriers, with a minority of index patients (17%) and male sex (43%), and a median age of 42 years [interquartile range (IQR) 27–55]. During a median follow-up of 4.3 years (IQR 1.7–7.4), 72 (10.6%) carriers experienced malignant VA. Significant predictors were left ventricular ejection fraction, premature ventricular contraction count/24 h, amount of negative T waves, and presence of low-voltage electrocardiogram. The multivariable model had an excellent discriminative ability {C-statistic 0.83 [95% confidence interval (CI) 0.78–0.88]}. Applying the existing PLN risk model to the complete cohort yielded a C-statistic of 0.68 (95% CI 0.61–0.75). CONCLUSION: This new mutation-specific prediction model for individual VA risk in PLN p.Arg14del mutation carriers is superior to the existing PLN risk model, suggesting that risk prediction using mutation-specific phenotypic features can improve accuracy compared to a more generic approach

    Human Hereditary Cardiomyopathy Shares a Genetic Substrate With Bicuspid Aortic Valve.

    Get PDF
    The complex genetics underlying human cardiac disease is evidenced by its heterogenous manifestation, multigenic basis, and sporadic occurrence. These features have hampered disease modeling and mechanistic understanding. Here, we show that 2 structural cardiac diseases, left ventricular noncompaction (LVNC) and bicuspid aortic valve, can be caused by a set of inherited heterozygous gene mutations affecting the NOTCH ligand regulator MIB1 (MINDBOMB1) and cosegregating genes. We used CRISPR-Cas9 gene editing to generate mice harboring a nonsense or a missense MIB1 mutation that are both found in LVNC families. We also generated mice separately carrying these MIB1 mutations plus 5 additional cosegregating variants in the ASXL3, APCDD1, TMX3, CEP192, and BCL7A genes identified in these LVNC families by whole exome sequencing. Histological, developmental, and functional analyses of these mouse models were carried out by echocardiography and cardiac magnetic resonance imaging, together with gene expression profiling by RNA sequencing of both selected engineered mouse models and human induced pluripotent stem cell-derived cardiomyocytes. Potential biochemical interactions were assayed in vitro by coimmunoprecipitation and Western blot. Mice homozygous for the MIB1 nonsense mutation did not survive, and the mutation caused LVNC only in heteroallelic combination with a conditional allele inactivated in the myocardium. The heterozygous MIB1 missense allele leads to bicuspid aortic valve in a NOTCH-sensitized genetic background. These data suggest that development of LVNC is influenced by genetic modifiers present in affected families, whereas valve defects are highly sensitive to NOTCH haploinsufficiency. Whole exome sequencing of LVNC families revealed single-nucleotide gene variants of ASXL3, APCDD1, TMX3, CEP192, and BCL7A cosegregating with the MIB1 mutations and LVNC. In experiments with mice harboring the orthologous variants on the corresponding Mib1 backgrounds, triple heterozygous Mib1 Apcdd1 Asxl3 mice showed LVNC, whereas quadruple heterozygous Mib1 Cep192 Tmx3;Bcl7a mice developed bicuspid aortic valve and other valve-associated defects. Biochemical analysis suggested interactions between CEP192, BCL7A, and NOTCH. Gene expression profiling of mutant mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes revealed increased cardiomyocyte proliferation and defective morphological and metabolic maturation. These findings reveal a shared genetic substrate underlying LVNC and bicuspid aortic valve in which MIB1-NOTCH variants plays a crucial role in heterozygous combination with cosegregating genetic modifiers.This study was supported by grants PID2019-104776RB-I00 and PID2020-120326RB-I00, CB16/11/00399 (CIBER CV) financed by MCIN/AEI/10.13039/501100011033, a grant from the Fundación BBVA (Ref. BIO14_298), and a grant from Fundació La Marató de TV3 (Ref. 20153431) to J.L.d.l.P. M.S.-A. was supported by a PhD contract from the Severo Ochoa Predoctor-al Program (SVP-2014-068723) of the MCIN/AEI/10.13039/501100011033. J.R.G.-B. was supported by SEC/FEC-INV-BAS 21/021. A.R. was funded by grants from MCIN (PID2021123925OB-I00), TerCel (RD16/0011/0024), AGAUR (2017-SGR-899), and Fundació La Marató de TV3 (201534-30). J.M.P.-P. was supported by RTI2018-095410-B-I00 (MCIN) and PY2000443 (Junta de Andalucía). B.I. was supported by the European Commission (H2020-HEALTH grant No. 945118) and by MCIN (PID2019-107332RB-I00). DO’R was sup-ported by the Medical Research Council (MC-A658-5QEB0) and KAMcG by the British Heart Foundation (RG/19/6/34387, RE/18/4/34215). The cost of this publication was supported in part with funds from the European Regional Devel-opment Fund. The Centro Nacional de Investigaciones Cardiovasculares is sup-ported by the ISCIII, the MCIN, and the Pro Centro Nacional de Investigaciones Cardiovasculares Foundation and is a Severo Ochoa Center of Excellence (grant CEX2020001041-S) financed by MCIN/AEI/10.13039/501100011033. For the purpose of open access, the authors have applied a CC BY public copyright license to any Author Accepted Manuscript version arising.S

    Natural History of MYH7-Related Dilated Cardiomyopathy

    Full text link
    BACKGROUND Variants in myosin heavy chain 7 (MYH7) are responsible for disease in 1% to 5% of patients with dilated cardiomyopathy (DCM); however, the clinical characteristics and natural history of MYH7-related DCM are poorly described. OBJECTIVES We sought to determine the phenotype and prognosis of MYH7-related DCM. We also evaluated the influence of variant location on phenotypic expression. METHODS We studied clinical data from 147 individuals with DCM-causing MYH7 variants (47.6% female; 35.6 +/- 19.2 years) recruited from 29 international centers. RESULTS At initial evaluation, 106 (72.1%) patients had DCM (left ventricular ejection fraction: 34.5% +/- 11.7%). Median follow-up was 4.5 years (IQR: 1.7-8.0 years), and 23.7% of carriers who were initially phenotype-negative developed DCM. Phenotypic expression by 40 and 60 years was 46% and 88%, respectively, with 18 patients (16%) first diagnosed at <18 years of age. Thirty-six percent of patients with DCM met imaging criteria for LV noncompaction. During follow-up, 28% showed left ventricular reverse remodeling. Incidence of adverse cardiac events among patients with DCM at 5 years was 11.6%, with 5 (4.6%) deaths caused by end-stage heart failure (ESHF) and 5 patients (4.6%) requiring heart transplantation. The major ventricular arrhythmia rate was low (1.0% and 2.1% at 5 years in patients with DCM and in those with LVEF of <= 35%, respectively). ESHF and major ventricular arrhythmia were significantly lower compared with LMNA-related DCM and similar to DCM caused by TTN truncating variants. CONCLUSIONS MYH7-related DCM is characterized by early age of onset, high phenotypic expression, low left ventricular reverse remodeling, and frequent progression to ESHF. Heart failure complications predominate over ventricular arrhythmias, which are rare. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation

    Epidemiological trends of HIV/HCV coinfection in Spain, 2015-2019

    Get PDF
    Altres ajuts: Spanish AIDS Research Network; European Funding for Regional Development (FEDER).Objectives: We assessed the prevalence of anti-hepatitis C virus (HCV) antibodies and active HCV infection (HCV-RNA-positive) in people living with HIV (PLWH) in Spain in 2019 and compared the results with those of four similar studies performed during 2015-2018. Methods: The study was performed in 41 centres. Sample size was estimated for an accuracy of 1%. Patients were selected by random sampling with proportional allocation. Results: The reference population comprised 41 973 PLWH, and the sample size was 1325. HCV serostatus was known in 1316 PLWH (99.3%), of whom 376 (28.6%) were HCV antibody (Ab)-positive (78.7% were prior injection drug users); 29 were HCV-RNA-positive (2.2%). Of the 29 HCV-RNA-positive PLWH, infection was chronic in 24, it was acute/recent in one, and it was of unknown duration in four. Cirrhosis was present in 71 (5.4%) PLWH overall, three (10.3%) HCV-RNA-positive patients and 68 (23.4%) of those who cleared HCV after anti-HCV therapy (p = 0.04). The prevalence of anti-HCV antibodies decreased steadily from 37.7% in 2015 to 28.6% in 2019 (p < 0.001); the prevalence of active HCV infection decreased from 22.1% in 2015 to 2.2% in 2019 (p < 0.001). Uptake of anti-HCV treatment increased from 53.9% in 2015 to 95.0% in 2019 (p < 0.001). Conclusions: In Spain, the prevalence of active HCV infection among PLWH at the end of 2019 was 2.2%, i.e. 90.0% lower than in 2015. Increased exposure to DAAs was probably the main reason for this sharp reduction. Despite the high coverage of treatment with direct-acting antiviral agents, HCV-related cirrhosis remains significant in this population

    Towards an Enhanced Tool for Quantifying the Degree of LV Hyper-Trabeculation

    No full text
    Left ventricular non-compaction (LVNC) is defined by an increase of trabeculations in left ventricular (LV) endomyocardium. Although LVNC can be in isolation, an increase in hypertrabeculation often accompanies genetic cardiomyopathies. Current methods for quantification of LV trabeculae have limitations. Several improvements are proposed and implemented to enhance a software tool to quantify the trabeculae degree in the LV myocardium in an accurate and automatic way for a population of patients with genetic cardiomyopathies (QLVTHCI). The software tool is developed and evaluated for a population of 59 patients (470 end-diastole cardiac magnetic resonance images). This tool produces volumes of the compact sector and the trabecular area, the proportion between these volumes, and the left ventricular and trabeculated masses. Substantial enhancements are obtained over the manual process performed by cardiologists, so saving important diagnosis time. The parallelization of the detection of the external layer is proposed to ensure real-time processing of a patient, obtaining speed-ups from 7.5 to 1500 with regard to QLVTHCI and the manual process used traditionally by cardiologists. Comparing the method proposed with the fractal proposal to differentiate LVNC and non-LVNC patients among 27 subjects with previously diagnosed cardiomyopathies, QLVTHCI presents a full diagnostic accuracy, while the fractal criteria achieve 78%. Moreover, QLTVHCI can be installed and integrated in hospitals on request, whereas the high cost of the license of the fractal method per year of this tool has prevented reproducibility by other medical centers
    corecore