327 research outputs found

    Glucose metabolism and oscillatory behavior of pancreatic islets

    Full text link
    A variety of oscillations are observed in pancreatic islets.We establish a model, incorporating two oscillatory systems of different time scales: One is the well-known bursting model in pancreatic beta-cells and the other is the glucose-insulin feedback model which considers direct and indirect feedback of secreted insulin. These two are coupled to interact with each other in the combined model, and two basic assumptions are made on the basis of biological observations: The conductance g_{K(ATP)} for the ATP-dependent potassium current is a decreasing function of the glucose concentration whereas the insulin secretion rate is given by a function of the intracellular calcium concentration. Obtained via extensive numerical simulations are complex oscillations including clusters of bursts, slow and fast calcium oscillations, and so on. We also consider how the intracellular glucose concentration depends upon the extracellular glucose concentration, and examine the inhibitory effects of insulin.Comment: 11 pages, 16 figure

    Insights into GABA receptor signalling in TM3 Leydig cells

    Get PDF
    gamma-Aminobutyric acid (GABA) is an emerging signalling molecule in endocrine organs, since it is produced by endocrine cells and acts via GABA(A) receptors in a paracrine/autocrine fashion. Testicular Leydig cells are producers and targets for GABA. These cells express GABA(A) receptor subunits and in the murine Leydig cell line TM3 pharmacological activation leads to increased proliferation. The signalling pathway of GABA in these cells is not known in this study. We therefore attempted to elucidate details of GABA(A) signalling in TM3 and adult mouse Leydig cells using several experimental approaches. TM3 cells not only express GABA(A) receptor subunits, but also bind the GABA agonist {[}H-3] muscimol with a binding affinity in the range reported for other endocrine cells (K-d = 2.740 +/- 0.721 nM). However, they exhibit a low B-max value of 28.08 fmol/mg protein. Typical GABA(A) receptor-associated events, including Cl- currents, changes in resting membrane potential, intracellular Ca2+ or cAMP, were not measurable with the methods employed in TM3 cells, or, as studied in part, in primary mouse Leydig cells. GABA or GABA(A) agonist isoguvacine treatment resulted in increased or decreased levels of several mRNAs, including transcription factors (c-fos, hsf-1, egr-1) and cell cycle-associated genes (Cdk2, cyclin D1). In an attempt to verify the cDNA array results and because egr-1 was recently implied in Leydig cell development, we further studied this factor. RT-PCR and Western blotting confirmed a time-dependent regulation of egr-1 in TM3. In the postnatal testis egr-1 was seen in cytoplasmic and nuclear locations of developing Leydig cells, which bear GABA(A) receptors and correspond well to TM3 cells. Thus, GABA acts via an untypical novel signalling pathway in TM3 cells. Further details of this pathway remain to be elucidated. Copyright (c) 2005 S. Karger AG, Base

    Accurate Characterization of Silicon-On-Insulator MOSFETs for the Design of Low-Voltage, Low-Power RF Integrated Circuits

    Full text link
    The maturation of low cost Silicon-on-Insulator (SOI) MOSFET technology in the microwave domain has brought about a need to develop specific characterization techniques. An original scheme is presented, which, by combining careful design of probing and calibration structures, rigorous in-situ calibration, and a new powerful direct extraction method, allows reliable identification of the parameters of the non-quasi-static small-signal model and the high-frequency noise parameters for MOSFETs. The extracted model is shown to be valid up to 40 GHz.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44055/1/10470_2004_Article_271487.pd

    Microbial engineering for production of N-functionalized amino acids and amines

    Get PDF
    Mindt M, Walter T, Kugler P, Wendisch VF. Microbial engineering for production of N-functionalized amino acids and amines. Biotechnology Journal . 2020;15(7): 1900451.N‐ functionalized amines play important roles in nature and occur, for example, in the antibiotic vancomycin, the immunosuppressant cyclosporine, the cytostatic actinomycin, the siderophore aerobactin, the cyanogenic glucoside linamarin, and the polyamine spermidine. In the pharmaceutical and fine‐chemical industries N‐ functionalized amines are used as building blocks for the preparation of bioactive molecules. Processes based on fermentation and on enzyme catalysis have been developed to provide sustainable manufacturing routes to N‐ alkylated, N‐ hydroxylated, N‐ acylated, or other N‐ functionalized amines including polyamines. Metabolic engineering for provision of precursor metabolites is combined with heterologous N‐ functionalizing enzymes such as imine or ketimine reductases, opine or amino acid dehydrogenases, N‐ hydroxylases, N‐ acyltransferase, or polyamine synthetases. Recent progress and applications of fermentative processes using metabolically engineered bacteria and yeasts along with the employed enzymes are reviewed and the perspectives on developing new fermentative processes based on insight from enzyme catalysis are discussed

    Inefficient Quality Control of Thermosensitive Proteins on the Plasma Membrane

    Get PDF
    BACKGROUND: Misfolded proteins are generally recognised by cellular quality control machinery, which typically results in their ubiquitination and degradation. For soluble cytoplasmic proteins, degradation is mediated by the proteasome. Membrane proteins that fail to fold correctly are subject to ER associated degradation (ERAD), which involves their extraction from the membrane and subsequent proteasome-dependent destruction. Proteins with abnormal transmembrane domains can also be recognised in the Golgi or endosomal system and targeted for destruction in the vacuole/lysosome. It is much less clear what happens to membrane proteins that reach their destination, such as the cell surface, and then suffer damage. METHODOLOGY/PRINCIPAL FINDINGS: We have tested the ability of yeast cells to degrade membrane proteins to which temperature-sensitive cytoplasmic alleles of the Ura3 protein or of phage lambda repressor have been fused. In soluble form, these proteins are rapidly degraded upon temperature shift, in part due to the action of the Doa10 and San1 ubiquitin ligases and the proteasome. When tethered to the ER protein Use1, they are also degraded. However, when tethered to a plasma membrane protein such as Sso1 they escape degradation, either in the vacuole or by the proteasome. CONCLUSIONS/SIGNIFICANCE: Membrane proteins with a misfolded cytoplasmic domain appear not to be efficiently recognised and degraded once they have escaped the ER, even though their defective domains are exposed to the cytoplasm and potentially to cytoplasmic quality controls. Membrane tethering may provide a way to reduce degradation of unstable proteins

    Roles of IP3R and RyR Ca2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death

    Get PDF
    OBJECTIVE—Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of diabetes, but the roles of specific ER Ca2+ release channels in the ER stress–associated apoptosis pathway remain unknown. Here, we examined the effects of stimulating or inhibiting the ER-resident inositol trisphosphate receptors (IP3Rs) and the ryanodine receptors (RyRs) on the induction of β-cell ER stress and apoptosis

    Imaging Cyclic AMP Changes in Pancreatic Islets of Transgenic Reporter Mice

    Get PDF
    Cyclic AMP (cAMP) and Ca2+ are two ubiquitous second messengers in transduction pathways downstream of receptors for hormones, neurotransmitters and local signals. The availability of fluorescent Ca2+ reporter dyes that are easily introduced into cells and tissues has facilitated analysis of the dynamics and spatial patterns for Ca2+ signaling pathways. A similar dissection of the role of cAMP has lagged because indicator dyes do not exist. Genetically encoded reporters for cAMP are available but they must be introduced by transient transfection in cell culture, which limits their utility. We report here that we have produced a strain of transgenic mice in which an enhanced cAMP reporter is integrated in the genome and can be expressed in any targeted tissue and with tetracycline induction. We have expressed the cAMP reporter in β-cells of pancreatic islets and conducted an analysis of intracellular cAMP levels in relation to glucose stimulation, Ca2+ levels, and membrane depolarization. Pancreatic function in transgenic mice was normal. In induced transgenic islets, glucose evoked an increase in cAMP in β-cells in a dose-dependent manner. The cAMP response is independent of (in fact, precedes) the Ca2+ influx that results from glucose stimulation of islets. Glucose-evoked cAMP responses are synchronous in cells throughout the islet and occur in 2 phases suggestive of the time course of insulin secretion. Insofar as cAMP in islets is known to potentiate insulin secretion, the novel transgenic mouse model will for the first time permit detailed analyses of cAMP signals in β-cells within islets, i.e. in their native physiological context. Reporter expression in other tissues (such as the heart) where cAMP plays a critical regulatory role, will permit novel biomedical approaches

    Aerosolized BC-819 Inhibits Primary but Not Secondary Lung Cancer Growth

    Get PDF
    Despite numerous efforts, drug based treatments for patients suffering from lung cancer remains poor. As a promising alternative, we investigated the therapeutic potential of BC-819 for the treatment of lung cancer in mouse tumor models. BC-819 is a novel plasmid DNA which encodes for the A-fragment of Diphtheria toxin and has previously been shown to successfully inhibit tumor growth in human clinical study of bladder carcinoma. In a first set of experiments, we examined in vitro efficacy of BC-819 in human lung cancer cell-lines NCI-H460, NCI-H358 and A549, which revealed >90% reduction of cell growth. In vivo efficacy was examined in an orthotopic mouse xenograft lung cancer model and in a lung metastasis model using luminescent A549-C8-luc adenocarcinoma cells. These cells resulted in peri- and intra-bronchiolar tumors upon intrabronchial application and parenchymal tumors upon intravenous injection, respectively. Mice suffering from these lung tumors were treated with BC-819, complexed to branched polyethylenimine (PEI) and aerosolized to the mice once per week for a period of 10 weeks. Using this regimen, growth of intrabronchially induced lung tumors was significantly inhibited (p = 0.01), whereas no effect could be observed in mice suffering from lung metastasis. In summary, we suggest that aerosolized PEI/BC-819 is capable of reducing growth only in tumors arising from the luminal part of the airways and are therefore directly accessible for inhaled BC-819
    corecore