1,097 research outputs found

    Chemical Imaging of Buried Interfaces in Organic-Inorganic Devices Using Focused Ion Beam-Time-of-Flight-Secondary-Ion Mass Spectrometry

    Get PDF
    Copyright © 2019 American Chemical Society. Organic-inorganic hybrid materials enable the design and fabrication of new materials with enhanced properties. The interface between the organic and inorganic materials is often critical to the device's performance; therefore, chemical characterization is of significant interest. Because the interfaces are often buried, milling by focused ion beams (FIBs) to expose the interface is becoming increasingly popular. Chemical imaging can subsequently be obtained using secondary-ion mass spectrometry (SIMS). However, the FIB milling process damages the organic material. In this study, we make an organic-inorganic test structure to develop a detailed understanding of the processes involved in FIB milling and SIMS imaging. We provide an analysis methodology that involves a "clean-up" process using sputtering with an argon gas cluster ion source to remove the FIB-induced damage. The methodology is evaluated for two additive manufactured devices, an encapsulated strain sensor containing silver tracks embedded in a polymeric material and a copper track on a flexible polymeric substrate created using a novel nanoparticle sintering technique

    High Spectral Resolution Observations of the Massive Stars in the Galactic Center

    Full text link
    We present high-resolution near-infrared spectra, obtained with the NIRSPEC spectrograph on the W. M. Keck II Telescope, of a collection of hot, massive stars within the central 25 arcseconds of the Galactic center. We have identified a total of twenty-one emission-line stars, seven of which are new radial velocity detections with five of those being classified as He I emission-line stars for the first time. These stars fall into two categories based on their spectral properties: 1) those with narrow 2.112, 2.113 micron He I doublet absorption lines, and 2) those with broad 2.058 micron He I emission lines. These data have the highest spectral resolution ever obtained for these sources and, as a result, both components of the absorption doublet are separately resolved for the first time. We use these spectral features to measure radial velocities. The majority of the measured radial velocities have relative errors of 20 kms, smaller than those previously obtained with proper-motion or radial velocity measurements for similar stellar samples in the Galactic center. The radial velocities estimated from the He I absorption doublet are more robust than those previously estimated from the 2.058 micron emission line, since they do not suffer from confusion due to emission from the surrounding ISM. Using this velocity information, we agree that the stars are orbiting in a somewhat coherent manner but are not as defined into a disk or disks as previously thought. Finally, multi-epoch radial velocity measurements for IRS 16NE show a change in its velocity presumably due to an unseen stellar companion.Comment: ApJ accepted, 42 pages, 16 figure

    Intracellular drug uptake: a comparison of single cell measurements using ToF-SIMS imaging and quantification from cell populations with LC/MS/MS

    Get PDF
    ToF-SIMS is a label-free imaging method that has been shown to enable imaging of amiodarone in single rat macrophage (NR8383) cells. In this study, we show that the method extends to three other cell lines relevant to drug discovery: human embryonic kidney (HEK293), cervical cancer (HeLa), and liver cancer (HepG2). There is significant interest in the variation of drug uptake at the single cell level, and we use ToF-SIMS to show that there is great diversity between individual cells and when comparing each of the cell types. These single cell measurements are compared to quantitative measurements of cell-associated amiodarone for the population using LC/MS/MS and cell counting with flow cytometry. NR8383 and HepG2 cells uptake the greatest amount of amiodarone with an average of 2.38 and 2.60 pg per cell, respectively, and HeLa and Hek 293 have a significantly lower amount of amiodarone at 0.43 and 0.36 pg per cell, respectively. The amount of cell-associated drug for the ensemble population measurement (LC/MS/MS) is compared with the ToF-SIMS single cell data: a similar amount of drug was detected per cell for the NR8383, and HepG2 cells at a greater level than that for the HEK293 cells. However, the two techniques did not agree for the HeLa cells, and we postulate potential reasons for this

    High Precision Stellar Radial Velocities in the Galactic Center

    Full text link
    We present radial velocities for 85 cool stars projected onto the central parsec of the Galaxy. The majority of these velocities have relative errors of \sim1 km/s, or a factor of \sim30-100 smaller than those previously obtained with proper motion or other radial velocity measurements for a similar stellar sample. The error in a typical individual stellar velocity, including all sources of uncertainty, is 1.7 km/s. Two similar data sets were obtained one month apart, and the total error in the relative velocities is 0.80 km/s\ in the case where an object is common to both data sets. The data are used to characterize the velocity distribution of the old population in the Galctic Center. We find that the stars have a Gaussian velocity distribution with a mean heliocentric velocity of 10.1±-10.1\pm11.0 km/s (blueshifted) and a standard deviation of 100.9±7.7\pm7.7 km/s; the mean velocity of the sample is consistent with no bulk line-of-sight motion with respect to the Local Standard of Rest. At the 1 sigma level, the data are consistent with a symmetric velocity distribution about any arbitrary axis in the plane of the sky. We find evidence for a flattening in the distribution of late-type stars within a radius of \sim0.4 \pc, and infer a volume density distribution of r1/4^{-1/4} in this region. Finally, we establish a first epoch of radial velocity measurements which can be compared to subsequent epochs to measure small accelerations (1 km/s/yr), corresponding to the magnitude expected over a timespan of several years for stars nearest to Sgr A*.Comment: retrieve full version at http://www-int.stsci.edu/\simfiger/papers/nirspec/vel

    High spatial resolution ToF-SIMS imaging and image analysis strategies to monitor and quantify early phase separation in amorphous solid dispersions

    Get PDF
    Amorphous solid dispersions (ASDs) are formulations with enhanced drug solubility and dissolution rate compared to their crystalline counterparts, however, they can be inherently thermodynamically unstable. This can lead to amorphous phase separation and drug re-crystallisation, phenomena that are typically faster and more dominant at the product’s surfaces. This study investigates the use of high-resolution time of flight-secondary ion mass spectrometry (ToF-SIMS) imaging as a surface analysis technique combined with image-analysis for the early detection, monitoring and quantification of surface amorphous phase separation in ASDs. Its capabilities are demonstrated for two pharmaceutically relevant ASD systems with distinct re-crystallisation behaviours, prepared using hot melt extrusion (HME) followed by pelletisation or grinding: (1) paracetamol-hydroxypropyl methylcellulose (PCM-HPMC) pellets with drug loadings of 10–50% w/w and (2) indomethacin-polyvinylpyrrolidone (IND-PVP) ground material with drug loadings of 20–85% w/w. PCM-HPMC pellets showed intense phase separation, reaching 100% surface coverage within 1-5 months. In direct comparison, IND-PVP HME ground material was more stable with only a moderate formation of isolated IND-rich clusters. Image analysis allowed the reliable detection and quantification of local drug-rich clusters. An Avrami model was applied to determine and compare phase separation kinetics. The combination of chemical sensitivity and high spatial resolution afforded by SIMS was crucial to enable the study of early phase separation and re-crystallisation at the surface. Compared with traditional methods used to detect crystalline material, such as XRPD, we show that ToF-SIMS enabled detection of surface physical instability already at early stages of drug cluster formation in the first days of storage

    Rectifying interphases for preventing Li dendrite propagation in solid-state electrolytes

    Get PDF
    Solid-state electrolytes have emerged as the grail for safe and energy-dense Li metal batteries but still face significant challenges of Li dendrite propagation and interfacial incompatibility. In this work, an interface engineering approach is applied to introduce an electronic rectifying interphase between the solid-state electrolyte and Li metal anode. The rectifying behaviour restrains electron infiltration into the electrolyte, resulting in effective dendrite reduction. This interphase consists of a p-Si/n-TiO2 junction and an external Al layer, created using a multi-step sputter deposition technique on the surface of garnet pellets. The electronic rectifying behaviour is investigated via the asymmetric I-V responses of on-chip devices and further confirmed via the one-order of magnitude lower current response by electronic conductivity measurements on the pellets. The Al layer contributes to interface compatibility, which is verified from the lithiophilic surface and reduced interfacial impedance. Electrochemical measurements via Li symmetric cells show a significantly improved lifetime from dozens of hours to over two months. The reduction of the Li dendrite propagation behaviour is observed through 3D reconstructed morphologies of the solid-state electrolyte by X-ray computed tomography

    A New Era in Extragalactic Background Light Measurements: The Cosmic History of Accretion, Nucleosynthesis and Reionization

    Full text link
    (Brief Summary) What is the total radiative content of the Universe since the epoch of recombination? The extragalactic background light (EBL) spectrum captures the redshifted energy released from the first stellar objects, protogalaxies, and galaxies throughout cosmic history. Yet, we have not determined the brightness of the extragalactic sky from UV/optical to far-infrared wavelengths with sufficient accuracy to establish the radiative content of the Universe to better than an order of magnitude. Among many science topics, an accurate measurement of the EBL spectrum from optical to far-IR wavelengths, will address: What is the total energy released by stellar nucleosynthesis over cosmic history? Was significant energy released by non-stellar processes? Is there a diffuse component to the EBL anywhere from optical to sub-millimeter? When did first stars appear and how luminous was the reionization epoch? Absolute optical to mid-IR EBL spectrum to an astrophysically interesting accuracy can be established by wide field imagingat a distance of 5 AU or above the ecliptic plane where the zodiacal foreground is reduced by more than two orders of magnitude.Comment: 7 pages; Science White Paper for the US Astro 2010-2020 Decadal Survey. If interested in further community-wide efforts on this topic please contact the first autho

    Single-cell analysis: visualizing pharmaceutical and metabolite uptake in cells with label-free 3D mass spectrometry imaging

    Get PDF
    Detecting metabolites and parent compound within a cell type is now a priority for pharmaceutical development. In this context, three-dimensional secondary ion mass spectrometry (SIMS) imaging was used to investigate the cellular uptake of the antiarrhythmic agent amiodarone, a phospholipidosis-inducing pharmaceutical compound. The high lateral resolution and 3D imaging capabilities of SIMS combined with the multiplex capabilities of ToF mass spectrometric detection allows for the visualization of pharmaceutical compound and metabolites in single cells. The intact, unlabeled drug compound was successfully detected at therapeutic dosages in macrophages (cell line: NR8383). Chemical information from endogenous biomolecules was used to correlate drug distributions with morphological features. From this spatial analysis, amiodarone was detected throughout the cell with the majority of the compound found in the membrane and subsurface regions and absent in the nuclear regions. Similar results were obtained when the macrophages were doped with amiodarone metabolite, desethylamiodarone. The FWHM lateral resolution measured across an intracellular interface in a high lateral resolution ion images was approximately 550 nm. Overall, this approach provides the basis for studying cellular uptake of pharmaceutical compounds and their metabolites on the single cell level

    3D ToF-SIMS imaging of polymer multilayer films using argon cluster sputter depth profiling

    Get PDF
    ToF-SIMS imaging with argon cluster sputter depth profiling has provided detailed insight into the three-dimensional (3D) chemical composition of a series of polymer multilayer structures. Depths of more than 15 μm were profiled in these samples while maintaining uniform sputter rates. The 3D chemical images provide information regarding the structure of the multilayer systems that could be used to inform future systems manufacturing and development. This also includes measuring the layer homogeneity, thickness, and interface widths. The systems analyzed were spin-cast multilayers comprising alternating polystyrene (PS) and polyvinylpyrrolidone (PVP) layers. These included samples where the PVP and PS layer thickness values were kept constant throughout and samples where the layer thickness was varied as a function of depth in the multilayer. The depth profile data obtained was observed to be superior to that obtained for the same materials using alternative ion sources such as C60 n+. The data closely reflected the “as manufactured” sample specification, exhibiting good agreement with ellipsometry measurements of layer thickness, while also maintaining secondary ion intensities throughout the profiling regime. The unprecedented quality of the data allowed a detailed analysis of the chemical structure of these systems, revealing some minor imperfections within the polymer layers and demonstrating the enhanced capabilities of the argon cluster depth profiling technique

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo
    corecore