2,702 research outputs found

    Variable anodic thermal control coating

    Get PDF
    A process for providing a thermal control solar stable surface coating for aluminum surfaces adapted to be exposed to solar radiation wherein selected values within the range of 0.10 to 0.72 thermal emittance (epsilon sub tau) and 0.2 to 0.4 solar absorptance (alpha subs) are reproducibly obtained by anodizing the surface area in a chromic acid solution for a selected period of time. The rate voltage and time, along with the parameters of initial epsilon sub tau and alpha subs, temperature of the chromic acid solution, acid concentration of the solution and the material anodized determines the final values of epsilon/tau sub and alpha sub S. 9 Claims, 5 Drawing Figures

    Video signal processing system uses gated current mode switches to perform high speed multiplication and digital-to-analog conversion

    Get PDF
    Video signal processor uses special-purpose integrated circuits with nonsaturating current mode switching to accept texture and color information from a digital computer in a visual spaceflight simulator and to combine these, for display on color CRT with analog information concerning fading

    The Effect of Desegregation on Public School Bonds in the Southern States

    Get PDF
    In the wake of Brown v. Board of Education\u27 six recent cases arising in four states have involved a constitutional challenge to the validity of an issue of public bonds to finance segregated schools. In each case it was contended that bonds authorized and approved according to statute could not be validated or the proceeds used for a purpose now unconstitutional. Confronting this apparently meritorious contention was the impelling practical consideration of furthering public education in the already lagging South. Legal answers, embodying this equitable consideration, ranged from a plea to jurisdiction, to interpretation of a statute or bond, to a rationale that while unconstitutional, segregated school facilities are not illegal until integration has had local legal recognition. The outstanding similarities in these cases were the attitude of the courts and the result; the courts were unanimous in sustaining the validity of the issue and in rejecting the contention of unconstitutionality. Striking, however, is the fact that no two states refused to invalidate the bonds on the same ground, and that no general technique received approval in more than two courts. If for no other reason, this kaleidoscopic divergence of solution would be of sufficient legal interest to deserve comment

    Comparison of herbage yield, nutritive value and ensilability traits of three ryegrass species evaluated for the Irish Recommended List

    Get PDF
    peer-reviewedThis study examined 169 of the newest varieties of three ryegrass species, perennial (Lolium perenne L.), Italian (Lolium multiflorum Lam.) and hybrid (Lolium boucheanum Kunth), from Recommended List trials in Ireland. The traits examined were yield, dry matter concentration, three nutritive value traits (in vitro dry matter digestibility, water-soluble carbohydrate on a dry matter basis and crude protein concentration) and two ensilability traits (buffering capacity and water soluble carbohydrate concentration on an aqueous phase basis). Varietal monocultures of each species underwent a six cut combined simulated grazing and silage management in each of two years following sowing. Perennial ryegrass yielded less than both other species in one-year-old swards, but less than only Italian ryegrass in two-year-old swards, but generally had the higher in vitro dry matter digestibility and crude protein values. Italian ryegrass displayed the most favourable ensilability characteristics of the three species with perennial ryegrass less favourable and hybrid ryegrass intermediate. Overall, despite the high yields and favourable nutritive value and ensilability traits recorded, the general differences between the three ryegrass species studied were in line with industry expectations. These findings justify assessing the nutritive value and ensilability of ryegrass species, in addition to yield, to allow farmers select species that match farming enterprise requirements.We acknowledge the Department of Agriculture, Food and the Marine for funding provided through the Research Stimulus Fund (07 526

    Revision of Earth-sized Kepler Planet Candidate Properties with High Resolution Imaging by Hubble Space Telescope

    Get PDF
    We present the results of our Hubble Space Telescope program and describe how our analysis methods were used to re-evaluate the habitability of some of the most interesting Kepler planet candidates. Our program observed 22 Kepler Object of Interest (KOI) host stars, several of which were found to be multiple star systems unresolved by Kepler. We use our high-resolution imaging to spatially resolve the stellar multiplicity of Kepler-296, KOI-2626, and KOI-3049, and develop a conversion to the Kepler photometry (Kp) from the F555W and F775W filters on WFC3/UVIS. The binary system Kepler-296 (5 planets) has a projected separation of 0.217" (80AU); KOI-2626 (1 planet candidate) is a triple star system with a projected separation of 0.201" (70AU) between the primary and secondary components and 0.161" (55AU) between the primary and tertiary; and the binary system KOI-3049 (1 planet candidate) has a projected separation of 0.464" (225AU). We use our measured photometry to fit the separated stellar components to the latest Victoria-Regina Stellar Models with synthetic photometry to conclude that the systems are coeval. The components of the three systems range from mid-K dwarf to mid-M dwarf spectral types. We solved for the planetary properties of each system analytically and via an MCMC algorithm using our independent stellar parameters. The planets range from ~1.6R_Earth to ~4.2R_Earth, mostly Super Earths and mini-Neptunes. As a result of the stellar multiplicity, some planets previously in the Habitable Zone are, in fact, not, and other planets may be habitable depending on their assumed stellar host.Comment: 16 pages, 10 figures, ApJ, 804, 9

    A massive exoplanet candidate around KOI-13: Independent confirmation by ellipsoidal variations

    Full text link
    We present an analysis of the KOI-13.01 candidate exoplanet system included in the September 2011 Kepler data release. The host star is a known and relatively bright (mKP=9.95)(m_{\rm KP} = 9.95) visual binary with a separation significantly smaller (0.8 arcsec) than the size of a Kepler pixel (4 arcsec per pixel). The Kepler light curve shows both primary and secondary eclipses, as well as significant out-of-eclipse light curve variations. We confirm that the transit occurs round the brighter of the two stars. We model the relative contributions from (i) thermal emission from the companion, (ii) planetary reflected light, (iii) Doppler beaming, and (iv) ellipsoidal variations in the host-star arising from the tidal distortion of the host star by its companion. Our analysis, based on the light curve alone, enables us to constrain the mass of the KOI-13.01 companion to be MC=8.3±1.25MJM_{\rm C} = 8.3 \pm 1.25M_{\rm J} and thus demonstrates that the transiting companion is a planet (rather than a brown dwarf which was recently proposed by \cite{b7}). The high temperature of the host star (Spectral Type A5-7V, Teff=8511−8020T_{\rm eff} = 8511-8020 K), combined with the proximity of its companion KOI-13.01, may make it one of the hottest exoplanets known, with a detectable thermal contribution to the light curve even in the Kepler optical passband. However, the single passband of the Kepler light curve does not enable us to unambiguously distinguish between the thermal and reflected components of the planetary emission. Infrared observations may help to break the degeneracy, while radial velocity follow-up with σ∼\sigma \sim 100 m s−1^{-1} precision should confirm the mass of the planet.Comment: 7 pages, 5 figure

    Hubble Space Telescope High Resolution Imaging of Kepler Small and Cool Exoplanet Host Stars

    Get PDF
    High resolution imaging is an important tool for follow-up study of exoplanet candidates found via transit detection with the Kepler Mission. We discuss here HST imaging with the WFC3 of 23 stars that host particularly interesting Kepler planet candidates based on their small size and cool equilibrium temperature estimates. Results include detections, exclusion of background stars that could be a source of false positives for the transits, and detection of physically-associated companions in a number of cases providing dilution measures necessary for planet parameter refinement. For six KOIs, we find that there is ambiguity in which star hosts the transiting planet(s), with potentially strong implications for planetary characteristics. Our sample is evenly distributed in G, K, and M spectral types. Albeit with a small sample size, we find that physically-associated binaries are more common than expected at each spectral type, reaching a factor of 10 frequency excess at M. We document the program detection sensitivities, detections, and deliverables to the Kepler follow-up program archive.Comment: Accepted for the Astronomical Journal; 13 pages with 9 figure

    Effect of β-cyclodextrin on trans fats, CLA, PUFA, and phospholipids of milk fat: Method update

    Get PDF
    Peer Reviewe

    Kepler Mission Stellar and Instrument Noise Properties

    Get PDF
    Kepler Mission results are rapidly contributing to fundamentally new discoveries in both the exoplanet and asteroseismology fields. The data returned from Kepler are unique in terms of the number of stars observed, precision of photometry for time series observations, and the temporal extent of high duty cycle observations. As the first mission to provide extensive time series measurements on thousands of stars over months to years at a level hitherto possible only for the Sun, the results from Kepler will vastly increase our knowledge of stellar variability for quiet solar-type stars. Here we report on the stellar noise inferred on the timescale of a few hours of most interest for detection of exoplanets via transits. By design the data from moderately bright Kepler stars are expected to have roughly comparable levels of noise intrinsic to the stars and arising from a combination of fundamental limitations such as Poisson statistics and any instrument noise. The noise levels attained by Kepler on-orbit exceed by some 50% the target levels for solar-type, quiet stars. We provide a decomposition of observed noise for an ensemble of 12th magnitude stars arising from fundamental terms (Poisson and readout noise), added noise due to the instrument and that intrinsic to the stars. The largest factor in the modestly higher than anticipated noise follows from intrinsic stellar noise. We show that using stellar parameters from galactic stellar synthesis models, and projections to stellar rotation, activity and hence noise levels reproduces the primary intrinsic stellar noise features.Comment: Accepted by ApJ; 26 pages, 20 figure
    • …
    corecore