3,013 research outputs found

    Analysis of Iron Meteorites Using Computed Tomography and Electron-probe Microanalysis

    Get PDF
    Computed tomography (CT) imaging and electron-probe microanalysis (EPMA) have been used to study samples of the Mundrabilla and Colomera iron meteorites in order to perform structural, textural, and mineralogical analysis. Both gamma-ray (Co-60 source, essentially monochromatic 1.25MeV avg.) and x-ray (420 KeV, continuous) sources have been used, with effective resolution of approximately 1 mm and 0.25 mm, respectively. The gamma-ray source provides approx. 15 cm penetration through steel and is used for larger samples, whereas the x-ray source provides superior resolution at reduced penetration but exhibits beam hardening artifacts. Here we present a combined approach where CT and EPMA imaging and microanalysis aid in the identification of structural and compositional features in iron meteorites

    Fluctuations of thermal conductivity and morphological stability

    Get PDF
    Compositional fluctuations of the binary alloy result in the corresponding fluctuations of the thermal conductivity of the material. During crystal growth, these fluctuations can significantly modify the local temperature fields at the liquid-solid interface. This, in turn, will affect the morphological stability of the growing interface. In this work, the temperature dependence of the thermal conductivity of the solid phase has been included into the Mullins-Sekerka formalism. A significant effect on the onset of the instability of planar interface has been predicted. It has been found, in particular, that for binary systems with the segregation coefficient above unity a flat interface is always unstable. The shape of the interface fluctuation should have a single harmonic character with a well defined wavelength

    The Universal Multizone Crystallizator (UMC) Furnace: An International Cooperative Agreement

    Get PDF
    The Universal Multizone Crystallizator (UMC) is a special apparatus for crystal growth under terrestrial and microgravity conditions. The use of twenty-five zones allows the UMC to be used for several normal freezing growth techniques. The thermal profile is electronically translated along the stationary sample by systematically reducing the power to the control zones. Elimination of mechanical translation devices increases the systems reliability while simultaneously reducing the size and weight. This paper addresses the UMC furnace design, sample cartridge and typical thermal profiles and corresponding power requirements necessary for the dynamic gradient freeze crystal growth technique. Results from physical vapor transport and traveling heater method crystal growth experiments are also discussed

    Initial development of a high-pressure crystal growth facility: Center director's discretionary fund

    Get PDF
    A low-cost, flexible, high-pressure (600 psi) system for crystal growth and related thermophysical properties measurements was designed, assembled, and tested. The furnace system includes a magnetically coupled translation mechanism that eliminates the need for a high-pressure mechanical feedthru. The system is currently being used for continuing crystal growth experiments and thermophysical properties measurements on several material systems including Hg(1-x)Cd(x)Te, Hg(1-x)Zn(x)Te, and Hg(1-x)Zn(x)Se

    Target product profiles for protecting against outdoor malaria transmission.

    Get PDF
    BACKGROUND\ud \ud Long-lasting insecticidal nets (LLINs) and indoor residual sprays (IRS) have decimated malaria transmission by killing indoor-feeding mosquitoes. However, complete elimination of malaria transmission with these proven methods is confounded by vectors that evade pesticide contact by feeding outdoors.\ud \ud METHODS\ud \ud For any assumed level of indoor coverage and personal protective efficacy with insecticidal products, process-explicit malaria transmission models suggest that insecticides that repel mosquitoes will achieve less impact upon transmission than those that kill them outright. Here such models are extended to explore how outdoor use of products containing either contact toxins or spatial repellents might augment or attenuate impact of high indoor coverage of LLINs relying primarily upon contact toxicity.\ud \ud RESULTS\ud \ud LLIN impact could be dramatically enhanced by high coverage with spatial repellents conferring near-complete personal protection, but only if combined indoor use of both measures can be avoided where vectors persist that prefer feeding indoors upon humans. While very high levels of coverage and efficacy will be required for spatial repellents to substantially augment the impact of LLINs or IRS, these ambitious targets may well be at least as practically achievable as the lower requirements for equivalent impact using contact insecticides.\ud \ud CONCLUSIONS\ud \ud Vapour-phase repellents may be more acceptable, practical and effective than contact insecticides for preventing outdoor malaria transmission because they need not be applied to skin or clothing and may protect multiple occupants of spaces outside of treatable structures such as nets or houses

    Modelling and observation of transionospheric propagation results from ISIS II in preparation for ePOP

    Get PDF
    The enhanced Polar Outflow Probe (ePOP) is scheduled to be launched as part of the Cascade Demonstrator Small-Sat and Ionospheric Polar Explorer (CASSIOPE) satellite in early 2008. A Radio Receiver Instrument (RRI) on ePOP will receive HF transmissions from various ground-based transmitters. In preparation for the ePOP mission, data from a similar transionospheric experiment performed by the International Satellites for Ionospheric Studies (ISIS) II satellite has been studied. Prominent features in the received 9.303-MHz signal were periodic Faraday fading of signal intensity at rates up to 13 Hz and a time of arrival delay between the O- and X-modes of up to 0.8 ms. Both features occurred when the satellite was above or south of the Ottawa transmitter. Ionospheric models for ray tracing were constructed using both International Reference Ionosphere (IRI) profiles and local peak electron density values from ISIS ionograms. Values for fade rate and differential mode delay were computed and compared to the values observed in the ISIS II data. The computed values showed very good agreement to the observed values of both received signal parameters when the topside sounding <I>fo</I>F2 values were used to scale IRI profiles, but not when strictly modelled IRI profiles were used. It was determined that the primary modifier of the received signal parameters was the <I>fo</I>F2 density and not the shape of the profile. This dependence was due to refraction, at the 9.303-MHz signal frequency, causing the rays to travel larger distances near the peak density where essentially all the mode splitting occurred. This study should assist in interpretation of ePOP RRI data when they are available

    The Influence of Reduced Gravity on the Crystal Growth of Electronic Materials

    Get PDF
    The imperfections in the grown crystals of electronic materials, such as compositional nonuniformity, dopant segregation and crystalline structural defects, are detrimental to the performance of the opto-electronic devices. Some of these imperfections can be attributed to effects caused by Earth gravity during crystal growth process and four areas have been identified as the uniqueness of material processing in reduced gravity environment. The significant results of early flight experiments, i.e. prior to space shuttle era, are briefly reviewed followed by an elaborated review on the recent flight experiments conducted on shuttle missions. The results are presented for two major growth methods of electronic materials: melt and vapor growth. The use of an applied magnetic field in the melt growth of electrically conductive melts on Earth to simulate the conditions of reduced gravity has been investigated and it is believed that the superimposed effect of moderate magnetic fields and the reduced gravity environment of space can result in reduction of convective intensities to the extent unreachable by the exclusive use of magnet on Earth or space processing. In the Discussions section each of the significant results of the flight experiments is attributed to one of the four effects of reduced gravity and the unresolved problems on the measured mass fluxes in some of the vapor transport flight experiments are discussed

    Effect of pragmatic versus explanatory interventions on medication adherence in people with cardiometabolic conditions: a systematic review and meta-analysis

    Get PDF
    Objective To synthesise findings from randomised controlled trials (RCTs) of interventions aimed at increasing medication adherence in individuals with type 2 diabetes (T2DM) and/or cardiovascular disease (CVD). And, in a novel approach, to compare the intervention effect of studies which were categorised as being more pragmatic or more explanatory using the Pragmatic-Explanatory Continuum Indicator Summary-2 (PRECIS-2) tool, to identify whether study design affects outcomes. As explanatory trials are typically held under controlled conditions, findings from such trials may not be relatable to real-world clinical practice. In comparison, pragmatic trials are designed to replicate real-world conditions and therefore findings are more likely to represent those found if the intervention were to be implemented in routine care. Design Systematic review and meta-analysis. Data sources Ovid Medline, Ovid Embase, Web of Science and CINAHL from 1 January 2013 to 31 December 2018. Eligibility criteria for selecting studies RCTs lasting ≥3 months (90 days), involving ≥200 patients in the analysis, with either established CVD and/or T2DM and which measured medication adherence. From 4403 citations, 103 proceeded to full text review. Studies published in any language other than English and conference abstracts were excluded. Main outcome measure Change in medication adherence. Results Of 4403 records identified, 34 studies were considered eligible, of which 28, including 30 861 participants, contained comparable outcome data for inclusion in the meta-analysis. Overall interventions were associated with an increase in medication adherence (OR 1.57 (95% CI: 1.33 to 1.84), p<0.001; standardised mean difference 0.24 (95% CI: −0.10 to 0.59) p=0.101). The effectiveness of interventions did not differ significantly between studies considered pragmatic versus explanatory (p=0.598), but did differ by intervention type, with studies that included a multifaceted rather than a single-faceted intervention having a more significant effect (p=0.010). The analysis used random effect models and used the revised Cochrane Risk of Bias Tool to assess study quality. Conclusions In this meta-analysis, interventions were associated with a significant increase in medication adherence. Overall multifaceted interventions which included an element of education alongside regular patient contact or follow-up showed the most promise. Effectiveness of interventions between pragmatic and explanatory trials was comparable, suggesting that findings can be transferred from idealised to real-word conditions. PROSPERO registration number CRD42017059460

    Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy

    Get PDF
    How chemotherapy affects carcinoma genomes is largely unknown. Here we report whole-exome and deep sequencing of 30 paired oesophageal adenocarcinomas sampled before and after neo-adjuvant chemotherapy. Most, but not all, good responders pass through genetic bottlenecks, a feature associated with higher mutation burden pre-treatment. Some poor responders pass through bottlenecks, but re-grow by the time of surgical resection, suggesting a missed therapeutic opportunity. Cancers often show major changes in driver mutation presence or frequency after treatment, owing to outgrowth persistence or loss of sub-clones, copy number changes, polyclonality and/or spatial genetic heterogeneity. Post-therapy mutation spectrum shifts are also common, particularly C>A and TT>CT changes in good responders or bottleneckers. Post-treatment samples may also acquire mutations in known cancer driver genes (for example, SF3B1, TAF1 and CCND2) that are absent from the paired pre-treatment sample. Neo-adjuvant chemotherapy can rapidly and profoundly affect the oesophageal adenocarcinoma genome. Monitoring molecular changes during treatment may be clinically useful

    Dielectric multilayer waveguides for TE and TM mode matching

    Full text link
    We analyse theoretically for the first time to our knowledge the perfect phase matching of guided TE and TM modes with a multilayer waveguide composed of linear isotropic dielectric materials. Alongside strict investigation into dispersion relations for multilayer systems, we give an explicit qualitative explanation for the phenomenon of mode matching on the basis of the standard one-dimensional homogenization technique, and discuss the minimum number of layers and the refractive index profile for the proposed device scheme. Direct applications of the scheme include polarization-insensitive, intermodal dispersion-free planar propagation, efficient fibre-to-planar waveguide coupling and, potentially, mode filtering. As a self-sufficient result, we present compact analytical expressions for the mode dispersion in a finite, N-period, three-layer dielectric superlattice.Comment: 13 pages with figure
    corecore