152 research outputs found
Ischaemic strokes in patients with pulmonary arteriovenous malformations and hereditary hemorrhagic telangiectasia: associations with iron deficiency and platelets.
<div><p>Background</p><p>Pulmonary first pass filtration of particles marginally exceeding ∼7 µm (the size of a red blood cell) is used routinely in diagnostics, and allows cellular aggregates forming or entering the circulation in the preceding cardiac cycle to lodge safely in pulmonary capillaries/arterioles. Pulmonary arteriovenous malformations compromise capillary bed filtration, and are commonly associated with ischaemic stroke. Cohorts with CT-scan evident malformations associated with the highest contrast echocardiographic shunt grades are known to be at higher stroke risk. Our goal was to identify within this broad grouping, which patients were at higher risk of stroke.</p><p>Methodology</p><p>497 consecutive patients with CT-proven pulmonary arteriovenous malformations due to hereditary haemorrhagic telangiectasia were studied. Relationships with radiologically-confirmed clinical ischaemic stroke were examined using logistic regression, receiver operating characteristic analyses, and platelet studies.</p><p>Principal Findings</p><p>Sixty-one individuals (12.3%) had acute, non-iatrogenic ischaemic clinical strokes at a median age of 52 (IQR 41–63) years. In crude and age-adjusted logistic regression, stroke risk was associated not with venous thromboemboli or conventional neurovascular risk factors, but with low serum iron (adjusted odds ratio 0.96 [95% confidence intervals 0.92, 1.00]), and more weakly with low oxygen saturations reflecting a larger right-to-left shunt (adjusted OR 0.96 [0.92, 1.01]). For the same pulmonary arteriovenous malformations, the stroke risk would approximately double with serum iron 6 µmol/L compared to mid-normal range (7–27 µmol/L). Platelet studies confirmed overlooked data that iron deficiency is associated with exuberant platelet aggregation to serotonin (5HT), correcting following iron treatment. By MANOVA, adjusting for participant and 5HT, iron or ferritin explained 14% of the variance in log-transformed aggregation-rate (p = 0.039/p = 0.021).</p><p>Significance</p><p>These data suggest that patients with compromised pulmonary capillary filtration due to pulmonary arteriovenous malformations are at increased risk of ischaemic stroke if they are iron deficient, and that mechanisms are likely to include enhanced aggregation of circulating platelets.</p></div
Application of kt-BLAST acceleration to reduce cardiac MR imaging time in healthy and infarcted mice
OBJECT: We evaluated the use of kt-broad-use linear acquisition speed-up technique (kt-BLAST) acceleration of mouse cardiac imaging in order to reduce scan times, thereby minimising physiological variation and improving animal welfare. MATERIALS AND METHODS: Conventional cine cardiac MRI data acquired from healthy mice (n = 9) were subsampled to simulate kt-BLAST acceleration. Cardiological indices (left ventricular volume, ejection fraction and mass) were determined as a function of acceleration factor. kt-BLAST threefold undersampling was implemented on the scanner and applied to a second group of mice (n = 6 healthy plus 6 with myocardial infarct), being compared with standard cine imaging (3 signal averages) and cine imaging with one signal average. RESULTS: In the simulations, sufficient accuracy was achieved for undersampling factors up to three. Cardiological indices determined from the implemented kt-BLAST scanning showed no significant differences compared with the values determined from the standard sequence, and neither did indices derived from the cine scan with only one signal average despite its lower signal-to-noise ratio. Both techniques were applied successfully in the infarcted hearts. CONCLUSION: For cardiac imaging of mice, threefold undersampling of kt-space, or a similar reduction in the number of signal averages, are both feasible with subsequent reduction in imaging time
Defining Feasibility and Pilot Studies in Preparation for Randomised Controlled Trials: Development of a Conceptual Framework
We describe a framework for defining pilot and feasibility studies focusing on studies conducted in preparation for a randomised controlled trial. To develop the framework, we undertook a Delphi survey; ran an open meeting at a trial methodology conference; conducted a review of definitions outside the health research context; consulted experts at an international consensus meeting; and reviewed 27 empirical pilot or feasibility studies. We initially adopted mutually exclusive definitions of pilot and feasibility studies. However, some Delphi survey respondents and the majority of open meeting attendees disagreed with the idea of mutually exclusive definitions. Their viewpoint was supported by definitions outside the health research context, the use of the terms ‘pilot’ and ‘feasibility’ in the literature, and participants at the international consensus meeting. In our framework, pilot studies are a subset of feasibility studies, rather than the two being mutually exclusive. A feasibility study asks whether something can be done, should we proceed with it, and if so, how. A pilot study asks the same questions but also has a specific design feature: in a pilot study a future study, or part of a future study, is conducted on a smaller scale. We suggest that to facilitate their identification, these studies should be clearly identified using the terms ‘feasibility’ or ‘pilot’ as appropriate. This should include feasibility studies that are largely qualitative; we found these difficult to identify in electronic searches because researchers rarely used the term ‘feasibility’ in the title or abstract of such studies. Investigators should also report appropriate objectives and methods related to feasibility; and give clear confirmation that their study is in preparation for a future randomised controlled trial designed to assess the effect of an intervention
A randomised controlled trial of a patient based Diabetes recall and Management system: the DREAM trial: A study protocol [ISRCTN32042030]
BACKGROUND: Whilst there is broad agreement on what constitutes high quality health care for people with diabetes, there is little consensus on the most efficient way of delivering it. Structured recall systems can improve the quality of care but the systems evaluated to date have been of limited sophistication and the evaluations have been carried out in small numbers of relatively unrepresentative settings. Hartlepool, Easington and Stockton currently operate a computerised diabetes register which has to date produced improvements in the quality of care but performance has now plateaued leaving substantial scope for further improvement. This study will evaluate the effectiveness and efficiency of an area wide 'extended' system incorporating a full structured recall and management system, actively involving patients and including clinical management prompts to primary care clinicians based on locally-adapted evidence based guidelines. METHODS: The study design is a two-armed cluster randomised controlled trial of 61 practices incorporating evaluations of the effectiveness of the system, its economic impact and its impact on patient wellbeing and functioning
Adherent Human Alveolar Macrophages Exhibit a Transient Pro-Inflammatory Profile That Confounds Responses to Innate Immune Stimulation
Alveolar macrophages (AM) are thought to have a key role in the immunopathogenesis of respiratory diseases. We sought to test the hypothesis that human AM exhibit an anti-inflammatory bias by making genome-wide comparisons with monocyte derived macrophages (MDM). Adherent AM obtained by bronchoalveolar lavage of patients under investigation for haemoptysis, but found to have no respiratory pathology, were compared to MDM from healthy volunteers by whole genome transcriptional profiling before and after innate immune stimulation. We found that freshly isolated AM exhibited a marked pro-inflammatory transcriptional signature. High levels of basal pro-inflammatory gene expression gave the impression of attenuated responses to lipopolysaccharide (LPS) and the RNA analogue, poly IC, but in rested cells pro-inflammatory gene expression declined and transcriptional responsiveness to these stimuli was restored. In comparison to MDM, both freshly isolated and rested AM showed upregulation of MHC class II molecules. In most experimental paradigms ex vivo adherent AM are used immediately after isolation. Therefore, the confounding effects of their pro-inflammatory profile at baseline need careful consideration. Moreover, despite the prevailing view that AM have an anti-inflammatory bias, our data clearly show that they can adopt a striking pro-inflammatory phenotype, and may have greater capacity for presentation of exogenous antigens than MDM
A pragmatic cluster randomised controlled trial of a Diabetes REcall And Management system: the DREAM trial
BACKGROUND: Following the introduction of a computerised diabetes register in part of the northeast of England, care initially improved but then plateaued. We therefore enhanced the existing diabetes register to address these problems. The aim of the trial was to evaluate the effectiveness and efficiency of an area wide 'extended,' computerised diabetes register incorporating a full structured recall and management system, including individualised patient management prompts to primary care clinicians based on locally-adapted, evidence-based guidelines. METHODS: The study design was a pragmatic, cluster randomised controlled trial, with the general practice as the unit of randomisation. Set in 58 general practices in three Primary Care Trusts in the northeast of England, the study outcomes were the clinical process and outcome variables held on the diabetes register, patient-reported outcomes, and service and patient costs. The effect of the intervention was estimated using generalised linear models with an appropriate error structure. To allow for the clustering of patients within practices, population averaged models were estimated using generalized estimating equations. RESULTS: Patients in intervention practices were more likely to have at least one diabetes appointment recorded (OR 2.00, 95% CI 1.02, 3.91), to have a recording of a foot check (OR 1.87, 95% CI 1.09, 3.21), have a recording of receiving dietary advice (OR 2.77, 95% CI 1.22, 6.29), and have a recording of blood pressure (BP) (OR 2.14, 95% CI 1.06, 4.36). There was no difference in mean HbA1c or BP levels, but the mean cholesterol level in patients from intervention practices was significantly lower (-0.15 mmol/l, 95% CI -0.25, -0.06). There were no differences in patient-reported outcomes or in patient-reported use of drugs, or uptake of health services. The average cost per patient was not significantly different between the intervention and control groups. Costs incurred in administering the system at the register and in general practice were in addition to these. CONCLUSION: This study has shown benefits from an area-wide, computerised diabetes register incorporating a full structured recall and individualised patient management system. However, these benefits were achieved at a cost. In future, these costs may fall as electronic data exchange becomes a reliable reality. Trial registration: International Standard Randomised Controlled Trial Number (ISRCTN) Register, ISRCTN32042030
Organ Transplants From Deceased Donors With Primary Brain Tumors and Risk of Cancer Transmission
IMPORTANCE: Cancer transmission is a known risk for recipients of organ transplants. Many people wait a long time for a suitable transplant; some never receive one. Although patients with brain tumors may donate their organs, opinions vary on the risks involved. OBJECTIVE: To determine the risk of cancer transmission associated with organ transplants from deceased donors with primary brain tumors. Key secondary objectives were to investigate the association that donor brain tumors have with organ usage and posttransplant survival. DESIGN, SETTING, AND PARTICIPANTS: This was a cohort study in England and Scotland, conducted from January 1, 2000, to December 31, 2016, with follow-up to December 31, 2020. This study used linked data on deceased donors and solid organ transplant recipients with valid national patient identifier numbers from the UK Transplant Registry, the National Cancer Registration and Analysis Service (England), and the Scottish Cancer Registry. For secondary analyses, comparators were matched on factors that may influence the likelihood of organ usage or transplant failure. Statistical analysis of study data took place from October 1, 2021, to May 31, 2022. EXPOSURES: A history of primary brain tumor in the organ donor, identified from all 3 data sources using disease codes. MAIN OUTCOMES AND MEASURES: Transmission of brain tumor from the organ donor into the transplant recipient. Secondary outcomes were organ utilization (ie, transplant of an offered organ) and survival of kidney, liver, heart, and lung transplants and their recipients. Key covariates in donors with brain tumors were tumor grade and treatment history. RESULTS: This study included a total of 282 donors (median [IQR] age, 42 [33-54] years; 154 females [55%]) with primary brain tumors and 887 transplants from them, 778 (88%) of which were analyzed for the primary outcome. There were 262 transplants from donors with high-grade tumors and 494 from donors with prior neurosurgical intervention or radiotherapy. Median (IQR) recipient age was 48 (35-58) years, and 476 (61%) were male. Among 83 posttransplant malignancies (excluding NMSC) that occurred over a median (IQR) of 6 (3-9) years in 79 recipients of transplants from donors with brain tumors, none were of a histological type matching the donor brain tumor. Transplant survival was equivalent to that of matched controls. Kidney, liver, and lung utilization were lower in donors with high-grade brain tumors compared with matched controls. CONCLUSIONS AND RELEVANCE: Results of this cohort study suggest that the risk of cancer transmission in transplants from deceased donors with primary brain tumors was lower than previously thought, even in the context of donors that are considered as higher risk. Long-term transplant outcomes are favorable. These results suggest that it may be possible to safely expand organ usage from this donor group
Distribution of misfolded prion protein seeding activity alone does not predict regions of neurodegeneration
Protein misfolding is common across many neurodegenerative diseases, with misfolded proteins acting as seeds for "prion-like" conversion of normally folded protein to abnormal conformations. A central hypothesis is that misfolded protein accumulation, spread and distribution is restricted to specific neuronal populations of the central nervous system and thus predict regions of neurodegeneration. We examined this hypothesis using a highly sensitive assay system for detection of misfolded protein seeds in a murine model of prion disease. Misfolded prion protein seeds were observed widespread throughout the brain accumulating in all brain regions examined irrespective of neurodegeneration. Importantly neither time of exposure nor amount of misfolded protein seeds present determined regions of neurodegeneration. We further demonstrate two distinct microglia responses in prion infected brains, a 11 novel homeostatic response in all regions and an innate immune response restricted to sites of 12 neurodegeneration. Therefore accumulation of misfolded prion protein alone does not define targeting 13 of neurodegeneration which instead results only when misfolded prion protein accompanies a specific 14 innate immune response
Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons
Dopa-responsive dystonia (DRD) and Parkinson’s disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD
- …