269 research outputs found

    Foolishness : Kidder

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1467/thumbnail.jp

    Variation in the Analysis of Positively Selected Sites Using Nonsynonymous/Synonymous Rate Ratios: An Example Using Influenza Virus

    Get PDF
    Sites in a gene showing the nonsynonymous/synonymous rate ratio (Ο‰) >1 have been frequently identified to be under positive selection. To examine the performance of such analysis, sites of the Ο‰ ratio >1 in the HA1 gene of H3N2 subtype human influenza viruses were identified from seven overlapping sequence data sets in this study. Our results showed that the sites of the Ο‰ ratio >1 were of significant variation among the data sets even though they targeted similar clusters, indicating that the analysis is likely to be either of low sensitivity or of low specificity in identifying sites under positive selection. Most (43/45) of the sites showing Ο‰ >1 calculated from at least one data set are involved in B-cell epitopes which cover less than a half sites in the protein, suggesting that the analysis is likely to be of low sensitivity rather than of low specificity. It was further found that the analysis sensitivity could not be enhanced by including more sequences or covering longer time intervals. Previously some reports also likely identified only a portion of the sites under positive selection in the viral gene using the Ο‰ ratio. Low sensitivity of the analysis may result from that some sites under positive selection in the gene are also under negative (purifying) selection simultaneously for functional constrains, and so their Ο‰ ratios could be <1. Theoretically, the sites under the two opposite selection forces at the same time favor only certain nonsynonymous changes, e.g. those changing the antigenicity of the gene and maintaining the gene function. This study also suggested that sometimes we can identify more sites under positive selection using the Ο‰ ratio by integrating the positively selected sites estimated from multiple data sets

    The Spread of Fecally Transmitted Parasites in Socially-Structured Populations

    Get PDF
    Mammals are infected by a wide array of gastrointestinal parasites, including parasites that also infect humans and domesticated animals. Many of these parasites are acquired through contact with infectious stages present in soil, feces or vegetation, suggesting that ranging behavior will have a major impact on their spread. We developed an individual-based spatial simulation model to investigate how range use intensity, home range overlap, and defecation rate impact the spread of fecally transmitted parasites in a population composed of social groups (i.e., a socially structured population). We also investigated the effects of epidemiological parameters involving host and parasite mortality rates, transmissibility, disease–related mortality, and group size. The model was spatially explicit and involved the spillover of a gastrointestinal parasite from a reservoir population along the edge of a simulated reserve, which was designed to mimic the introduction pathogens into protected areas. Animals ranged randomly within a β€œcore” area, with biased movement toward the range center when outside the core. We systematically varied model parameters using a Latin hypercube sampling design. Analyses of simulation output revealed a strong positive association between range use intensity and the prevalence of infection. Moreover, the effects of range use intensity were similar in magnitude to effects of group size, mortality rates, and the per-contact probability of transmission. Defecation rate covaried positively with gastrointestinal parasite prevalence. Greater home range overlap had no positive effects on prevalence, with a smaller core resulting in less range overlap yet more intensive use of the home range and higher prevalence. Collectively, our results reveal that parasites with fecal-oral transmission spread effectively in socially structured populations. Future application should focus on parameterizing the model with empirically derived ranging behavior for different species or populations and data on transmission characteristics of different infectious organisms

    Pervasive Cryptic Epistasis in Molecular Evolution

    Get PDF
    The functional effects of most amino acid replacements accumulated during molecular evolution are unknown, because most are not observed naturally and the possible combinations are too numerous. We created 168 single mutations in wild-type Escherichia coli isopropymalate dehydrogenase (IMDH) that match the differences found in wild-type Pseudomonas aeruginosa IMDH. 104 mutant enzymes performed similarly to E. coli wild-type IMDH, one was functionally enhanced, and 63 were functionally compromised. The transition from E. coli IMDH, or an ancestral form, to the functional wild-type P. aeruginosa IMDH requires extensive epistasis to ameliorate the combined effects of the deleterious mutations. This result stands in marked contrast with a basic assumption of molecular phylogenetics, that sites in sequences evolve independently of each other. Residues that affect function are scattered haphazardly throughout the IMDH structure. We screened for compensatory mutations at three sites, all of which lie near the active site and all of which are among the least active mutants. No compensatory mutations were found at two sites indicating that a single site may engage in compound epistatic interactions. One complete and three partial compensatory mutations of the third site are remote and lie in a different domain. This demonstrates that epistatic interactions can occur between distant (>20Γ…) sites. Phylogenetic analysis shows that incompatible mutations were fixed in different lineages

    Modeling the evolution of a classic genetic switch

    Get PDF
    Abstract Background The regulatory network underlying the yeast galactose-use pathway has emerged as a model system for the study of regulatory network evolution. Evidence has recently been provided for adaptive evolution in this network following a whole genome duplication event. An ancestral gene encoding a bi-functional galactokinase and co-inducer protein molecule has become subfunctionalized as paralogous genes (GAL1 and GAL3) in Saccharomyces cerevisiae, with most fitness gains being attributable to changes in cis- regulatory elements. However, the quantitative functional implications of the evolutionary changes in this regulatory network remain unexplored. Results We develop a modeling framework to examine the evolution of the GAL regulatory network. This enables us to translate molecular changes in the regulatory network to changes in quantitative network function. We computationally reconstruct an inferred ancestral version of the network and trace the evolutionary paths in the lineage leading to S. cerevisiae. We explore the evolutionary landscape of possible regulatory networks and find that the operation of intermediate networks leading to S. cerevisiae differs substantially depending on the order in which evolutionary changes accumulate; in particular, we systematically explore evolutionary paths and find that some network features cannot be optimized simultaneously. Conclusions We find that a computational modeling approach can be used to analyze the evolution of a well-studied regulatory network. Our results are consistent with several experimental studies of the evolutionary of the GAL regulatory network, including increased fitness in Saccharomyces due to duplication and adaptive regulatory divergence. The conceptual and computational tools that we have developed may be applicable in further studies of regulatory network evolution

    Elastogenic Protein Expression of a Highly Elastic Murine Spinal Ligament: The Ligamentum Flavum

    Get PDF
    Spinal ligaments, such as the ligamentum flavum (LF), are prone to degeneration and iatrogenic injury that can lead to back pain and nerve dysfunction. Repair and regeneration strategies for these tissues are lacking, perhaps due to limited understanding of spinal ligament formation, the elaboration of its elastic fibers, maturation and homeostasis. Using immunohistochemistry and histology, we investigated murine LF elastogenesis and tissue formation from embryonic to mature postnatal stages. We characterized the spatiotemporal distribution of the key elastogenic proteins tropoelastin, fibrillin-1, fibulin-4 and lysyl oxidase. We found that elastogenesis begins in utero with the microfibril constituent fibrillin-1 staining intensely just before birth. Elastic fibers were first detected histologically at postnatal day (P) 7, the earliest stage at which tropoelastin and fibulin-4 stained intensely. From P7 to P28, elastic fibers grew in diameter and became straighter along the axis. The growth of elastic fibers coincided with intense staining of tropoelastin and fibulin-4 staining, possibly supporting a chaperone role for fibulin-4. These expression patterns correlated with reported skeletal and behavioral changes during murine development. This immunohistochemical characterization of elastogenesis of the LF will be useful for future studies investigating mechanisms for elastogenesis and developing new strategies for treatment or regeneration of spinal ligaments and other highly elastic tissues

    How robust are the natural history parameters used in chlamydia transmission dynamic models? A systematic review

    Get PDF
    Transmission dynamic models linked to economic analyses often form part of the decision making process when introducing new chlamydia screening interventions. Outputs from these transmission dynamic models can vary depending on the values of the parameters used to describe the infection. Therefore these values can have an important influence on policy and resource allocation. The risk of progression from infection to pelvic inflammatory disease has been extensively studied but the parameters which govern the transmission dynamics are frequently neglected. We conducted a systematic review of transmission dynamic models linked to economic analyses of chlamydia screening interventions to critically assess the source and variability of the proportion of infections that are asymptomatic, the duration of infection and the transmission probability. We identified nine relevant studies in Pubmed, Embase and the Cochrane database. We found that there is a wide variation in their natural history parameters, including an absolute difference in the proportion of asymptomatic infections of 25% in women and 75% in men, a six-fold difference in the duration of asymptomatic infection and a four-fold difference in the per act transmission probability. We consider that much of this variation can be explained by a lack of consensus in the literature. We found that a significant proportion of parameter values were referenced back to the early chlamydia literature, before the introduction of nucleic acid modes of diagnosis and the widespread testing of asymptomatic individuals. In conclusion, authors should use high quality contemporary evidence to inform their parameter values, clearly document their assumptions and make appropriate use of sensitivity analysis. This will help to make models more transparent and increase their utility to policy makers
    • …
    corecore