291 research outputs found
The Living Chain: An Applied Exploration of Mythological Narrative and Traditional Printmaking Techniques
The Living Chain is a body of work built to apply and analyze mythological narrative and traditional printmaking techniques. The work is a collection of prints telling an original narrative that derives much of its visual and thematic style from the works of the Baroque and Medieval periods, as well as significant influence from the prints of Gustave Doré. The purpose of this paper is to explore the ideas, mythologies, histories, and symbols found in and inspiring the work, in order to better understand the work’s purpose and its technical challenges. Additional focus is given to the historical significance and cultural impact of meaningful, mythological narratives and the differences between modern and historic narratives told through sequential works of art
Rollerball microendoscope for mosaicking in high-resolution oral imaging
Only 40% of oral cancers are diagnosed at an early, localized stage, when treatment is most effective [1]. Thus, implementing diagnostic imaging tools for early detection of highgrade dysplasia and cancer may help improve the survival rate of oral cancer patients [2]. The highresolution microendoscope (HRME) is a compact, portable, fiberbased imaging device that can image cell nuclei in tissue labeled with the fluorescent contrast agent proflavine [3]. The HRME allows clinicians to noninvasively image the size, shape and distribution of epithelial cell nuclei in vivo, enabling realtime evaluation of potentially neoplastic lesions [3]. The primary limitation of the HRME is the small field of view of its fiber probe (720 μm), which makes it timeconsuming to examine large areas of tissue. Mosaicking algorithms have previously been implemented to allow realtime generation of image mosaics during HRME imaging, thus interrogating a larger field of view than the fiber probe’s diameter [4]. However, this approach has had limited success in vivo due to the practical difficulty of translating the fiber probe across the tissue in a smooth, controlled manner in order for the mosaicking software to function properly. Here we report the construction and initial testing of a rollerball HRME probe that permits smooth, rolling translation across the tissue surface while maintaining image quality with subcellular resolution. The rollerball HRME consists of a standard HRME probe interfaced with a rollerball mechanism. The mechanism is composed of two 5mm sapphire ball lenses enclosed within a 3D printed penlike casing. The ball lenses serve as an optical relay, while the distal ball lens also serves as a rolling contact point with the tissue surface. Figure 1 shows the use of the rollerball HRME to generate a realtime mosaic of a calibration target (field finder slide) as it rolls across the surface of the target. Figure 2 shows the use of the rollerball HRME to generate a realtime mosaic showing cell nuclei on the lateral tongue of a healthy volunteer as it rolls across the tissue surface. The rollerball HRME will allow clinicians to more rapidly examine large areas of tissue with subcellular resolution, potentially aiding in the early detection of highgrade oral dysplasia and cance.
Please click Additional Files below to see the full abstract
Accuracy of In Vivo Multimodal Optical Imaging for Detection of Oral Neoplasia
If detected early, oral cancer is eminently curable. However, survival rates for oral cancer patients remain
low, largely due to late-stage diagnosis and subsequent difficulty of treatment. To improve cliniciansメ ability
to detect early disease and to treat advanced cancers, we developed a multimodal optical imaging system
(MMIS) to evaluate tissue in situ, at macroscopic and microscopic scales. The MMIS was used to measure
100 anatomic sites in 30 patients, correctly classifying 98% of pathologically confirmed normal tissue sites,
and 95% of sites graded as moderate dysplasia, severe dysplasia, or cancer. When used alone, MMIS
classification accuracy was 35% for sites determined by pathology as mild dysplasia. However, MMIS
measurements correlated with expression of candidate molecular markers in 87% of sites with mild
dysplasia. These findings support the ability of noninvasive multimodal optical imaging to accurately
identify neoplastic tissue and premalignant lesions. This in turn may have considerable impact on detection
and treatment of patients with oral cancer and other epithelial malignancies
Molecular cartooning with knowledge graphs
Molecular “cartoons,” such as pathway diagrams, provide a visual summary of biomedical research results and hypotheses. Their ubiquitous appearance within the literature indicates their universal application in mechanistic communication. A recent survey of pathway diagrams identified 64,643 pathway figures published between 1995 and 2019 with 1,112,551 mentions of 13,464 unique human genes participating in a wide variety of biological processes. Researchers generally create these diagrams using generic diagram editing software that does not itself embody any biomedical knowledge. Biomedical knowledge graphs (KGs) integrate and represent knowledge in a semantically consistent way, systematically capturing biomedical knowledge similar to that in molecular cartoons. KGs have the potential to provide context and precise details useful in drawing such figures. However, KGs cannot generally be translated directly into figures. They include substantial material irrelevant to the scientific point of a given figure and are often more detailed than is appropriate. How could KGs be used to facilitate the creation of molecular diagrams? Here we present a new approach towards cartoon image creation that utilizes the semantic structure of knowledge graphs to aid the production of molecular diagrams. We introduce a set of “semantic graphical actions” that select and transform the relational information between heterogeneous entities (e.g., genes, proteins, pathways, diseases) in a KG to produce diagram schematics that meet the scientific communication needs of the user. These semantic actions search, select, filter, transform, group, arrange, connect and extract relevant subgraphs from KGs based on meaning in biological terms, e.g., a protein upstream of a target in a pathway. To demonstrate the utility of this approach, we show how semantic graphical actions on KGs could have been used to produce three existing pathway diagrams in diverse biomedical domains: Down Syndrome, COVID-19, and neuroinflammation. Our focus is on recapitulating the semantic content of the figures, not the layout, glyphs, or other aesthetic aspects. Our results suggest that the use of KGs and semantic graphical actions to produce biomedical diagrams will reduce the effort required and improve the quality of this visual form of scientific communication
Multispectral optical imaging device for in vivo detection of oral neoplasia
A multispectral digital microscope (MDM) is designed and constructed as a tool to improve detection of oral neoplasia. The MDM acquires in vivo images of oral tissue in fluorescence, narrow-band (NB) reflectance, and orthogonal polarized reflectance (OPR) modes, to enable evaluation of lesions that may not exhibit high contrast under standard white light illumination. The device rapidly captures image sequences so that the diagnostic value of each modality can be qualitatively and quantitatively evaluated alone and in combination. As part of a pilot clinical trial, images are acquired from normal volunteers and patients with precancerous and cancerous lesions. In normal subjects, the visibility of vasculature can be enhanced by tuning the reflectance illumination wavelength and polarization. In patients with histologically confirmed neoplasia, we observe decreased blue/green autofluorescence and increased red autofluorescence in lesions, and increased visibility of vasculature using NB and OPR imaging. The perceived lesion borders change with imaging modality, suggesting that multimodal imaging has the potential to provide additional diagnostic information not available using standard white light illumination or by using a single imaging mode alone.NIH (R21 DE 16485; R01 CA 103830
Spatial Pd-L1, Immune-Cell Microenvironment, and Genomic Copy-Number Alteration Patterns and Drivers of Invasive-Disease Transition in Prospective Oral Precancer Cohort
BACKGROUND: Studies of the immune landscape led to breakthrough trials of programmed death-1 (PD-1) inhibitors for recurrent/metastatic head and neck squamous cell carcinoma therapy. This study investigated the timing, influence of somatic copy-number alterations (SCNAs), and clinical implications of PD-L1 and immune-cell patterns in oral precancer (OPC).
METHODS: The authors evaluated spatial CD3, CD3/8, and CD68 density (cells/mm
RESULTS: Epithelial, but not CD68 immune-cell, PD-L1 expression was detected in 28% of OPCs, correlated with immune-cell infiltration, 9p21.3 loss of heterozygosity (LOH), and inferior oral cancer-free survival (OCFS), notably in OPCs with low CD3/8 cell density, dysplasia, and/or 9p21.3 LOH. High CD3/8 cell density in dysplastic lesions predicted better OCFS and eliminated the excess risk associated with prior oral cancer and dysplasia. PD-L1 and CD3/8 patterns revealed inferior OCFS in PD-L1 high intrinsic induction and dysplastic immune-cold subgroups.
CONCLUSION: This report provides spatial insight into the immune landscape and drivers of OPCs, and a publicly available immunogenomic data set for future precancer interrogation. The data suggest that 9p21.3 LOH triggers an immune-hot inflammatory phenotype; whereas increased 9p deletion size encompassing CD274 at 9p24.1 may contribute to CD3/8 and PD-L1 depletion during invasive transition. The inferior OCFS in PD-L1-high, immune-cold OPCs support the development of T-cell recruitment strategies
A Fiber-Optic Fluorescence Microscope Using a Consumer-Grade Digital Camera for In Vivo Cellular Imaging
BACKGROUND: Early detection is an essential component of cancer management. Unfortunately, visual examination can often be unreliable, and many settings lack the financial capital and infrastructure to operate PET, CT, and MRI systems. Moreover, the infrastructure and expense associated with surgical biopsy and microscopy are a challenge to establishing cancer screening/early detection programs in low-resource settings. Improvements in performance and declining costs have led to the availability of optoelectronic components, which can be used to develop low-cost diagnostic imaging devices for use at the point-of-care. Here, we demonstrate a fiber-optic fluorescence microscope using a consumer-grade camera for in vivo cellular imaging. METHODS: The fiber-optic fluorescence microscope includes an LED light, an objective lens, a fiber-optic bundle, and a consumer-grade digital camera. The system was used to image an oral cancer cell line labeled with 0.01% proflavine. A human tissue specimen was imaged following surgical resection, enabling dysplastic and cancerous regions to be evaluated. The oral mucosa of a healthy human subject was imaged in vivo, following topical application of 0.01% proflavine. FINDINGS: The fiber-optic microscope resolved individual nuclei in all specimens and tissues imaged. This capability allowed qualitative and quantitative differences between normal and precancerous or cancerous tissues to be identified. The optical efficiency of the system permitted imaging of the human oral mucosa in real time. CONCLUSION: Our results indicate this device as a useful tool to assist in the identification of early neoplastic changes in epithelial tissues. This portable, inexpensive unit may be particularly appropriate for use at the point-of-care in low-resource settings
The future of medical diagnostics: Review paper
While histopathology of excised tissue remains the gold standard for diagnosis, several new, non-invasive diagnostic techniques are being developed. They rely on physical and biochemical changes that precede and mirror malignant change within tissue. The basic principle involves simple optical techniques of tissue interrogation. Their accuracy, expressed as sensitivity and specificity, are reported in a number of studies suggests that they have a potential for cost effective, real-time, in situ diagnosis. We review the Third Scientific Meeting of the Head and Neck Optical Diagnostics Society held in Congress Innsbruck, Innsbruck, Austria on the 11th May 2011. For the first time the HNODS Annual Scientific Meeting was held in association with the International Photodynamic Association (IPA) and the European Platform for Photodynamic Medicine (EPPM). The aim was to enhance the interdisciplinary aspects of optical diagnostics and other photodynamic applications. The meeting included 2 sections: oral communication sessions running in parallel to the IPA programme and poster presentation sessions combined with the IPA and EPPM posters sessions. © 2011 Jerjes et al; licensee BioMed Central Ltd
- …