9 research outputs found

    Consumer wearable devices for evaluation of heart rate control using digoxin versus beta-blockers: the RATE-AF randomized trial

    Get PDF
    Consumer-grade wearable technology has the potential to support clinical research and patient management. Here, we report results from the RATE-AF trial wearables study, which was designed to compare heart rate in older, multimorbid patients with permanent atrial fibrillation and heart failure who were randomized to treatment with either digoxin or beta-blockers. Heart rate (n = 143,379,796) and physical activity (n = 23,704,307) intervals were obtained from 53 participants (mean age 75.6 years (s.d. 8.4), 40% women) using a wrist-worn wearable linked to a smartphone for 20 weeks. Heart rates in participants treated with digoxin versus beta-blockers were not significantly different (regression coefficient 1.22 (95% confidence interval (CI) −2.82 to 5.27; P = 0.55); adjusted 0.66 (95% CI −3.45 to 4.77; P = 0.75)). No difference in heart rate was observed between the two groups of patients after accounting for physical activity (P = 0.74) or patients with high activity levels (≥30,000 steps per week; P = 0.97). Using a convolutional neural network designed to account for missing data, we found that wearable device data could predict New York Heart Association functional class 5 months after baseline assessment similarly to standard clinical measures of electrocardiographic heart rate and 6-minute walk test (F1 score 0.56 (95% CI 0.41 to 0.70) versus 0.55 (95% CI 0.41 to 0.68); P = 0.88 for comparison). The results of this study indicate that digoxin and beta-blockers have equivalent effects on heart rate in atrial fibrillation at rest and on exertion, and suggest that dynamic monitoring of individuals with arrhythmia using wearable technology could be an alternative to in-person assessment. ClinicalTrials.gov identifier: NCT02391337

    Redefining β-blocker response in heart failure patients with sinus rhythm and atrial fibrillation: a machine learning cluster analysis

    Get PDF
    Background: Mortality remains unacceptably high in patients with heart failure and reduced left ventricular ejection fraction (LVEF) despite advances in therapeutics. We hypothesised that a novel artificial intelligence approach could better assess multiple and higher-dimension interactions of comorbidities, and define clusters of β-blocker efficacy in patients with sinus rhythm and atrial fibrillation. Methods: Neural network-based variational autoencoders and hierarchical clustering were applied to pooled individual patient data from nine double-blind, randomised, placebo-controlled trials of β blockers. All-cause mortality during median 1·3 years of follow-up was assessed by intention to treat, stratified by electrocardiographic heart rhythm. The number of clusters and dimensions was determined objectively, with results validated using a leave-one-trial-out approach. This study was prospectively registered with ClinicalTrials.gov (NCT00832442) and the PROSPERO database of systematic reviews (CRD42014010012). Findings: 15 659 patients with heart failure and LVEF of less than 50% were included, with median age 65 years (IQR 56–72) and LVEF 27% (IQR 21–33). 3708 (24%) patients were women. In sinus rhythm (n=12 822), most clusters demonstrated a consistent overall mortality benefit from β blockers, with odds ratios (ORs) ranging from 0·54 to 0·74. One cluster in sinus rhythm of older patients with less severe symptoms showed no significant efficacy (OR 0·86, 95% CI 0·67–1·10; p=0·22). In atrial fibrillation (n=2837), four of five clusters were consistent with the overall neutral effect of β blockers versus placebo (OR 0·92, 0·77–1·10; p=0·37). One cluster of younger atrial fibrillation patients at lower mortality risk but similar LVEF to average had a statistically significant reduction in mortality with β blockers (OR 0·57, 0·35–0·93; p=0·023). The robustness and consistency of clustering was confirmed for all models (p<0·0001 vs random), and cluster membership was externally validated across the nine independent trials. Interpretation: An artificial intelligence-based clustering approach was able to distinguish prognostic response from β blockers in patients with heart failure and reduced LVEF. This included patients in sinus rhythm with suboptimal efficacy, as well as a cluster of patients with atrial fibrillation where β blockers did reduce mortality

    Consumer wearable devices for evaluation of heart rate control using digoxin versus beta-blockers: the RATE-AF randomized trial

    Get PDF
    Consumer-grade wearable technology has the potential to support clinical research and patient management. Here, we report results from the RATE-AF trial wearables study, which was designed to compare heart rate in older, multimorbid patients with permanent atrial fibrillation and heart failure who were randomized to treatment with either digoxin or beta-blockers. Heart rate (n = 143,379,796) and physical activity (n = 23,704,307) intervals were obtained from 53 participants (mean age 75.6 years (s.d. 8.4), 40% women) using a wrist-worn wearable linked to a smartphone for 20 weeks. Heart rates in participants treated with digoxin versus beta-blockers were not significantly different (regression coefficient 1.22 (95% confidence interval (CI) −2.82 to 5.27; P = 0.55); adjusted 0.66 (95% CI −3.45 to 4.77; P = 0.75)). No difference in heart rate was observed between the two groups of patients after accounting for physical activity (P = 0.74) or patients with high activity levels (≥30,000 steps per week; P = 0.97). Using a convolutional neural network designed to account for missing data, we found that wearable device data could predict New York Heart Association functional class 5 months after baseline assessment similarly to standard clinical measures of electrocardiographic heart rate and 6-minute walk test (F1 score 0.56 (95% CI 0.41 to 0.70) versus 0.55 (95% CI 0.41 to 0.68); P = 0.88 for comparison). The results of this study indicate that digoxin and beta-blockers have equivalent effects on heart rate in atrial fibrillation at rest and on exertion, and suggest that dynamic monitoring of individuals with arrhythmia using wearable technology could be an alternative to in-person assessment. ClinicalTrials.gov identifier: NCT02391337

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    Identification and Mapping Real-World Data Sources for Heart Failure, Acute Coronary Syndrome, and Atrial Fibrillation

    Get PDF
    BACKGROUND: Transparent and robust real-world evidence sources are increasingly important for global health, including cardiovascular (CV) diseases. We aimed to identify global real-world data (RWD) sources for heart failure (HF), acute coronary syndrome (ACS), and atrial fibrillation (AF). METHODS: We conducted a systematic review of publications with RWD pertaining to HF, ACS, and AF (2010-2018), generating a list of unique data sources. Metadata were extracted based on the source type (e.g., electronic health records, genomics, and clinical data), study design, population size, clinical characteristics, follow-up duration, outcomes, and assessment of data availability for future studies and linkage. RESULTS: Overall, 11,889 publications were retrieved for HF, 10,729 for ACS, and 6,262 for AF. From these, 322 (HF), 287 (ACS), and 220 (AF) data sources were selected for detailed review. The majority of data sources had near complete data on demographic variables (HF: 94%, ACS: 99%, and AF: 100%) and considerable data on comorbidities (HF: 77%, ACS: 93%, and AF: 97%). The least reported data categories were drug codes (HF, ACS, and AF: 10%) and caregiver involvement (HF: 6%, ACS: 1%, and AF: 1%). Only a minority of data sources provided information on access to data for other researchers (11%) or whether data could be linked to other data sources to maximize clinical impact (20%). The list and metadata for the RWD sources are publicly available at www.escardio.org/bigdata. CONCLUSIONS: This review has created a comprehensive resource of CV data sources, providing new avenues to improve future real-world research and to achieve better patient outcomes

    Identification and Mapping Real-World Data Sources for Heart Failure, Acute Coronary Syndrome, and Atrial Fibrillation.

    No full text
    BACKGROUND Transparent and robust real-world evidence sources are increasingly important for global health, including cardiovascular (CV) diseases. We aimed to identify global real-world data (RWD) sources for heart failure (HF), acute coronary syndrome (ACS), and atrial fibrillation (AF). METHODS We conducted a systematic review of publications with RWD pertaining to HF, ACS, and AF (2010-2018), generating a list of unique data sources. Metadata were extracted based on the source type (e.g., electronic health records, genomics, and clinical data), study design, population size, clinical characteristics, follow-up duration, outcomes, and assessment of data availability for future studies and linkage. RESULTS Overall, 11,889 publications were retrieved for HF, 10,729 for ACS, and 6,262 for AF. From these, 322 (HF), 287 (ACS), and 220 (AF) data sources were selected for detailed review. The majority of data sources had near complete data on demographic variables (HF: 94%, ACS: 99%, and AF: 100%) and considerable data on comorbidities (HF: 77%, ACS: 93%, and AF: 97%). The least reported data categories were drug codes (HF, ACS, and AF: 10%) and caregiver involvement (HF: 6%, ACS: 1%, and AF: 1%). Only a minority of data sources provided information on access to data for other researchers (11%) or whether data could be linked to other data sources to maximize clinical impact (20%). The list and metadata for the RWD sources are publicly available at www.escardio.org/bigdata. CONCLUSIONS This review has created a comprehensive resource of CV data sources, providing new avenues to improve future real-world research and to achieve better patient outcomes

    Identification and Mapping Real-World Data Sources for Heart Failure, Acute Coronary Syndrome, and Atrial Fibrillation.

    No full text
    BACKGROUND Transparent and robust real-world evidence sources are increasingly important for global health, including cardiovascular (CV) diseases. We aimed to identify global real-world data (RWD) sources for heart failure (HF), acute coronary syndrome (ACS), and atrial fibrillation (AF). METHODS We conducted a systematic review of publications with RWD pertaining to HF, ACS, and AF (2010-2018), generating a list of unique data sources. Metadata were extracted based on the source type (e.g., electronic health records, genomics, and clinical data), study design, population size, clinical characteristics, follow-up duration, outcomes, and assessment of data availability for future studies and linkage. RESULTS Overall, 11,889 publications were retrieved for HF, 10,729 for ACS, and 6,262 for AF. From these, 322 (HF), 287 (ACS), and 220 (AF) data sources were selected for detailed review. The majority of data sources had near complete data on demographic variables (HF: 94%, ACS: 99%, and AF: 100%) and considerable data on comorbidities (HF: 77%, ACS: 93%, and AF: 97%). The least reported data categories were drug codes (HF, ACS, and AF: 10%) and caregiver involvement (HF: 6%, ACS: 1%, and AF: 1%). Only a minority of data sources provided information on access to data for other researchers (11%) or whether data could be linked to other data sources to maximize clinical impact (20%). The list and metadata for the RWD sources are publicly available at www.escardio.org/bigdata. CONCLUSIONS This review has created a comprehensive resource of CV data sources, providing new avenues to improve future real-world research and to achieve better patient outcomes

    Smartphone detection of atrial fibrillation using photoplethysmography: a systematic review and meta-analysis.

    Get PDF
    OBJECTIVES Timely diagnosis of atrial fibrillation (AF) is essential to reduce complications from this increasingly common condition. We sought to assess the diagnostic accuracy of smartphone camera photoplethysmography (PPG) compared with conventional electrocardiogram (ECG) for AF detection. METHODS This is a systematic review of MEDLINE, EMBASE and Cochrane (1980-December 2020), including any study or abstract, where smartphone PPG was compared with a reference ECG (1, 3 or 12-lead). Random effects meta-analysis was performed to pool sensitivity/specificity and identify publication bias, with study quality assessed using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2) risk of bias tool. RESULTS 28 studies were included (10 full-text publications and 18 abstracts), providing 31 comparisons of smartphone PPG versus ECG for AF detection. 11 404 participants were included (2950 in AF), with most studies being small and based in secondary care. Sensitivity and specificity for AF detection were high, ranging from 81% to 100%, and from 85% to 100%, respectively. 20 comparisons from 17 studies were meta-analysed, including 6891 participants (2299 with AF); the pooled sensitivity was 94% (95% CI 92% to 95%) and specificity 97% (96%-98%), with substantial heterogeneity (p<0.01). Studies were of poor quality overall and none met all the QUADAS-2 criteria, with particular issues regarding selection bias and the potential for publication bias. CONCLUSION PPG provides a non-invasive, patient-led screening tool for AF. However, current evidence is limited to small, biased, low-quality studies with unrealistically high sensitivity and specificity. Further studies are needed, preferably independent from manufacturers, in order to advise clinicians on the true value of PPG technology for AF detection
    corecore