28,235 research outputs found

    Bell's inequality and the coincidence-time loophole

    Get PDF
    This paper analyzes effects of time-dependence in the Bell inequality. A generalized inequality is derived for the case when coincidence and non-coincidence [and hence whether or not a pair contributes to the actual data] is controlled by timing that depends on the detector settings. Needless to say, this inequality is violated by quantum mechanics and could be violated by experimental data provided that the loss of measurement pairs through failure of coincidence is small enough, but the quantitative bound is more restrictive in this case than in the previously analyzed "efficiency loophole."Comment: revtex4, 3 figures, v2: epl document class, reformatted w slight change

    A geometric proof of the Kochen-Specker no-go theorem

    Full text link
    We give a short geometric proof of the Kochen-Specker no-go theorem for non-contextual hidden variables models. Note added to this version: I understand from Jan-Aake Larsson that the construction we give here actually contains the original Kochen-Specker construction as well as many others (Bell, Conway and Kochen, Schuette, perhaps also Peres).Comment: This paper appeared some years ago, before the author was aware of quant-ph. It is relevant to recent developments concerning Kochen-Specker theorem

    Influence of Mediation on Estate Planning Decisions: Evidence from Indian Survey Data

    Get PDF
    Background: Intestate death can lead to the distribution of assets against the personal wishes of the deceased and is a problem in India, as 80% of Indians die without making a last will. Following the concepts of decision theory (i.e., the theory of choice), stewardship theory, agency theory, and signaling theory, the purpose of this study is to examine the influence of meditation on estate planning decisions. This study also seeks to extend previous findings on the influence of religious beliefs on the estate planning decisions of Canadians to that of Indians. Methods: Employed and self-employed individuals from India were surveyed regarding their perceptions of meditation and estate planning decisions. Results: The survey indicates that mediation positively influences the estate planning decisions while individuals who practice meditation have greater preferences for estate planning compared with those who do not. The findings suggest that individual assets, family size, and education positively influence the estate planning decisions of Indians. Conclusion: Reported meditation, individual assets, family size, location, education, and gender are positively correlated with the estate planning decisions of Indians

    A tight Tsirelson inequality for infinitely many outcomes

    Full text link
    We present a novel tight bound on the quantum violations of the CGLMP inequality in the case of infinitely many outcomes. Like in the case of Tsirelson's inequality the proof of our new inequality does not require any assumptions on the dimension of the Hilbert space or kinds of operators involved. However, it is seen that the maximal violation is obtained by the conjectured best measurements and a pure, but not maximally entangled, state. We give an approximate state which, in the limit where the number of outcomes tends to infinity, goes to the optimal state for this setting. This state might be potentially relevant for experimental verifications of Bell inequalities through multi-dimenisonal entangled photon pairs.Comment: 5 pages, 2 figures; improved presentation, change in title, as published

    Hybrid Superconductor-Quantum Point Contact Devices using InSb Nanowires

    Get PDF
    Proposals for studying topological superconductivity and Majorana bound states in nanowires proximity coupled to superconductors require that transport in the nanowire is ballistic. Previous work on hybrid nanowire-superconductor systems has shown evidence for Majorana bound states, but these experiments were also marked by disorder, which disrupts ballistic transport. In this letter, we demonstrate ballistic transport in InSb nanowires interfaced directly with superconducting Al by observing quantized conductance at zero-magnetic field. Additionally, we demonstrate that the nanowire is proximity coupled to the superconducting contacts by observing Andreev reflection. These results are important steps for robustly establishing topological superconductivity in InSb nanowires

    Experimenter's Freedom in Bell's Theorem and Quantum Cryptography

    Full text link
    Bell's theorem states that no local realistic explanation of quantum mechanical predictions is possible, in which the experimenter has a freedom to choose between different measurement settings. Within a local realistic picture the violation of Bell's inequalities can only be understood if this freedom is denied. We determine the minimal degree to which the experimenter's freedom has to be abandoned, if one wants to keep such a picture and be in agreement with the experiment. Furthermore, the freedom in choosing experimental arrangements may be considered as a resource, since its lacking can be used by an eavesdropper to harm the security of quantum communication. We analyze the security of quantum key distribution as a function of the (partial) knowledge the eavesdropper has about the future choices of measurement settings which are made by the authorized parties (e.g. on the basis of some quasi-random generator). We show that the equivalence between the violation of Bell's inequality and the efficient extraction of a secure key - which exists for the case of complete freedom (no setting knowledge) - is lost unless one adapts the bound of the inequality according to this lack of freedom.Comment: 7 pages, 2 figures, incorporated referee comment

    Dispersion Relations for Bernstein Waves in a Relativistic Pair Plasma

    Full text link
    A fully relativistic treatment of Bernstein waves in an electron-positron pair plasma has remained too formidable a task owing to the very complex nature of the problem. In this article, we perform contour integration of the dielectric response function and numerically compute the dispersion curves for a uniform, magnetized, relativistic electron-positron pair plasma. The behavior of the dispersion solution for several cases with different plasma temperatures is highlighted. In particular, we find two wave modes that exist only for large wavelengths and frequencies similar to the cyclotron frequency in a moderately relativistic pair plasma. The results presented here have important implications for the study of those objects where a hot magnetized electron-positron plasma plays a fundamental role in generating the observed radiation.Comment: 8 pages, 8 figures, Accepted for publication by Phys. Rev. E with minor change

    Thermal flight performance reveals impact of warming on bumblebee foraging potential

    Get PDF
    1. The effects of environmental temperature on components of insect flight determine life history traits, fitness, adaptability, and ultimately, organism ecosystem functional roles. Despite the crucial role of flying insects across landscapes, our understanding of how temperature affects insect flight performance remains limited. 2. Many insect pollinators are considered under threat from climatic warming. Quantifying the relationship between temperature and behavioural performance traits allows us to understand where species are operating in respect to their thermal limits, helping predict responses to projected temperature increases and/or erratic weather events. 3. Using a tethered flight mill, we quantify how flight performance of a widespread bumblebee, Bombus terrestris, varies over a temperature range (12-30oC). Given that body mass constrains insect mobility and behaviour, bumblebees represent a useful system to study temperature-mediated size-dependence of flight performance owing to the large intra-colony variation in worker body size they exhibit.. 4. Workers struggled to fly over a few hundred metres at the lowest tested temperature of 12oC, however flight endurance increased as temperatures rose, peaking around 25oC after which it declined. Our findings further revealed variation in flight capacity across the workforce, with larger workers flying further, longer, and faster than their smaller nestmates. Body mass was also positively related with the likelihood of flight, although importantly this relationship became stronger as temperatures cooled, such that at 12oC only the largest workers were successful fliers. Our study thus highlights that colony foraging success under variable thermal environments can be dependent on the body mass distribution of constituent workers, and more broadly suggests smaller-bodied insects may benefit disproportionately more from warming than larger-bodied ones in terms of flight performance. 5. By incorporating both flight endurance and likelihood of flight, we calculated a simple metric termed ‘temperature-mediated foraging potential’ to gain a clearer understanding of how temperature may constrain colony foraging. Of our tested temperatures, 27oC supported the highest potential, indicating that for much of the range of this species, higher mean daily temperatures as forecasted under climate warming will push colonies closer to their thermal optimum for flight. Subsequently, warming may have positive implications for bumblebee foraging returns and pollination provision
    • 

    corecore