176 research outputs found

    Disease and treatment-related burden in patients with acromegaly who are biochemically controlled on injectable somatostatin receptor ligands

    Get PDF
    Medical treatment for acromegaly commonly involves receiving intramuscular or deep subcutaneous injections of somatostatin receptor ligands (SRLs) in most patients. In addition to side effects of treatment, acromegaly patients often still experience disease symptoms even when therapy is successful in controlling GH and IGF-1 levels. Symptoms and side effects can negatively impact patients' health-related quality of life. In this study, we examine the disease- and treatment-related burden associated with SRL injections as reported through the use of the Acromegaly Treatment Satisfaction Questionnaire (Acro-TSQ(C)) and clinician-reported symptom severity through the Acromegaly Index of Severity (AIS). Patients included in this analysis were enrolled in a randomized phase 3 study, were biochemically-controlled (an IGF-1 = 6 months with a stable dose of either long- acting octreotide or lanreotide monotherapy for >= 4 months. The sample (N = 91) was 65% female, 91% Caucasian, with a mean [standard deviation (SD)] age of 53 (1) years. Two-thirds of patients reported that they still experience acromegaly symptoms; 82% of these said they experience symptoms all of the time. Three-fourths experienced gastrointestinal (GI) side effects after injections, and 77% experienced treatment-related injection site reactions (ISRs). Patients commonly reported that these interfered with their daily life, leisure, and work activities. Those with higher symptom severity, as measured by the AIS, scored significantly worse on several Acro-TSQ domains: Symptom Interference, GI Interference, Treatment Satisfaction, and Emotional Reaction. Despite being biochemically controlled with injectable SRLs, most patients reported experiencing acromegaly symptoms that interfere with daily life, leisure, and work. GI side effects and ISRs were also common. This study highlights the significant disease burden that still persists for patients with acromegaly that have achieved biochemical control with the use of injectable SRLs.Diabetes mellitus: pathophysiological changes and therap

    MPOWERED trial open-label extension: long-term efficacy and safety data for oral octreotide capsules in acromegaly

    Get PDF
    Context The MPOWERED core trial (NCT02685709) and open-label extension (OLE) phase investigated long-term efficacy and safety of oral octreotide capsules (OOC) in patients with acromegaly. Core trial primary endpoint data demonstrated noninferiority to injectable somatostatin receptor ligands (iSRLs). Core trial completers were invited to participate in the OLE phase. Objective To assess long-term efficacy and safety of OOC in patients with acromegaly who previously responded to and tolerated both OOC and injectable octreotide/lanreotide and completed the core phase. Methods The unique study design of transitioning between OOC and iSRLs allowed within-patient evaluations. The proportion of biochemical responders (insulin-like growth factor I < 1.3 x upper limit of normal) at end of each extension year who entered that year as responders was the main outcome measure. Results At year 1 extension end, 52/58 patients from both the monotherapy and the combination therapy groups were responders (89.7%; 95% CI 78.8-96.1), 36/41 (87.8%; 95% CI 73.8-95.9) in year 2, and 29/31 (93.5%; 95% CI 78.6-99.2) in year 3. No new or unexpected safety signals were detected; 1 patient withdrew owing to treatment failure. Patients who transitioned from iSRLs in the core trial to OOC in the OLE phase reported improved treatment convenience/satisfaction and symptom control. Conclusion Patient-reported outcome data support for the first time that transitioning patients randomized to iSRL (who previously responded to both OOC and iSRLs) back to OOC had a significant effect on patients' symptoms score in a prospective cohort. The MPOWERED OLE showed long-term maintenance of response and sustained safety with OOC.Metabolic health: pathophysiological trajectories and therap

    Concurrent multiple sclerosis and amyotrophic lateral sclerosis: where inflammation and neurodegeneration meet?

    Get PDF
    The concurrence of multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) is exceedingly rare and the pathological features have not been examined extensively. Here we describe the key pathological features of a 40 year old man with pathologically confirmed concurrent MS and ALS

    The Level of Isoprostanes as a Non-invasive Marker for in vivo Lipid Peroxidation in Secondary Progressive Multiple Sclerosis

    Get PDF
    Oxidative stress leads to lipid peroxidation and may contribute to the pathogenesis of lesions in multiple sclerosis (MS), an autoimmune disease characterized by inflammatory as well as degenerative phenomena. Isoprostanes are prostaglandin-like compounds which are formed by free radical catalysed peroxidation of arachidonic acid esterified in membrane phospholipids. They are a new class of sensitive specific markers for in vivo lipid peroxidation. In this study 26 patients (15 females and 11 males; mean age 48.2 ± 15.2 year; mean disease duration 10.0 ± 6.5 year) with secondary progressive MS (SPMS) and 12 healthy controls were enrolled. In patients with multiple sclerosis the lipid peroxidation as the level of urine isoprostanes and the level of thiobarbituric acid reactive species (TBARS) in plasma were estimated. Moreover, we estimated the total antioxidative status (TAS) in plasma. It was found that the urine isoprostanes level was over 6-fold elevated in patients with SPMS than in control (P < 0.001). In SPMS patients TBARS level was also statistically higher than in controls (P < 0.01). However, we did not observed any difference of TAS level in serum between SPMS patients and controls (P > 0.05). In patients with SPMS the lipid peroxidation and oxidative stress measured as the increased level of isoprostanes was observed. Thus, we suggest that the level of isoprostanes may be used as non-invasive marker for a determination of oxidative stress what in turn, together with clinical symptoms, may determine an specific antioxidative therapy in SPMS patients

    NCF1 gene and pseudogene pattern: association with parasitic infection and autoimmunity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neutrophil cytosolic factor 1, p47<sup>phox </sup>(NCF1) is a component of the leukocyte NADPH oxidase complex mediating formation of reactive oxygen intermediates (ROI) which play an important role in host defense and autoimmunity. An individual genomic pattern of <it>ncf1 </it>and its two types of pseudogenes (reflected by the ΔGT/GTGT ratio) may influence the individual capacity to produce ROI.</p> <p>Methods</p> <p>NCF1ΔGT/GTGT ratios were correlated with clinical parameters and ROI production during <it>Plasmodium falciparum </it>malaria and with susceptibility to the autoimmune disease multiple sclerosis (MS).</p> <p>Results</p> <p>Among Gabonese children with severe malaria, ROI production from peripheral blood tended to be higher in individuals with a ΔGT/GTGT ratio ≤ 1:1. ΔGT/GTGT ratios were not associated with susceptibility to MS, but to age-of-onset among MS patients.</p> <p>Conclusion</p> <p>The genomic pattern of <it>NCF1 </it>and its pseudogenes might influence ROI production but only marginally influence susceptibility to and outcome of malaria and MS.</p

    Triterpenoid modulation of IL-17 and Nrf-2 expression ameliorates neuroinflammation and promotes remyelination in autoimmune encephalomyelitis

    Get PDF
    Inflammatory cytokines and endogenous anti-oxidants are variables affecting disease progression in multiple sclerosis (MS). Here we demonstrate the dual capacity of triterpenoids to simultaneously repress production of IL-17 and other pro-inflammatory mediators while exerting neuroprotective effects directly through Nrf2-dependent induction of anti-oxidant genes. Derivatives of the natural triterpene oleanolic acid, namely CDDO-trifluoroethyl-amide (CDDO-TFEA), completely suppressed disease in a murine model of MS, experimental autoimmune encephalomyelitis (EAE), by inhibiting Th1 and Th17 mRNA and cytokine production. Encephalitogenic T cells recovered from treated mice were hypo-responsive to myelin antigen and failed to adoptively transfer the disease. Microarray analyses showed significant suppression of pro-inflammatory transcripts with concomitant induction of anti-inflammatory genes including Ptgds and Hsd11b1. Finally, triterpenoids induced oligodendrocyte maturation in vitro and enhanced myelin repair in an LPC-induced non-inflammatory model of demyelination in vivo. These results demonstrate the unique potential of triterpenoid derivatives for the treatment of neuroinflammatory disorders such as MS

    Absence of system xc⁻ on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis

    Get PDF
    Background: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System x(c)- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. Methods: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system x(c)-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT(-/-)) mice and irradiated mice reconstituted in xCT(-/-) bone marrow (BM), to their proper wild type (xCT(+/+)) controls. Results: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT(+/+) mice, xCT(-/-) mice were equally susceptible to EAE, whereas mice transplanted with xCT(-/-) BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. Conclusions: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system x(c)- on immune cells invading the CNS participates to EAE. Since a total loss of system x(c)- had no net beneficial effects, these results have important implications for targeting system x(c)- for treatment of MS

    Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation

    Get PDF
    Background: Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. Methods/Principal Findings: To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. Conclusion: The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of oxidative stress and pro-inflammatory cytokines. This model may both facilitate understanding of the events involved in neuroinflammation and aid in the development of neuroprotective therapies for the treatment of MS and other neurodegenerative diseases

    Glatiramer acetate reduces the risk for experimental cerebral malaria: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral malaria (CM) is associated with high mortality and morbidity caused by a high rate of transient or persistent neurological sequelae. Studies on immunomodulatory and neuroprotective drugs as ancillary treatment in murine CM indicate promising potential. The current study was conducted to evaluate the efficacy of glatiramer acetate (GA), an immunomodulatory drug approved for the treatment of relapsing remitting multiple sclerosis, in preventing the death of C57Bl/6J mice infected with <it>Plasmodium berghei </it>ANKA.</p> <p>Methods and Results</p> <p>GA treatment led to a statistically significant lower risk for developing CM (57.7% versus 84.6%) in treated animals. The drug had no effect on the course of parasitaemia. The mechanism of action seems to be an immunomodulatory effect since lower IFN-gamma levels were observed in treated animals in the early course of the disease (day 4 post-infection) which also led to a lower number of brain sequestered leukocytes in treated animals. No direct neuro-protective effect such as an inhibition of apoptosis or reduction of micro-bleedings in the brain was found.</p> <p>Conclusion</p> <p>These findings support the important role of the host immune response in the pathophysiology of murine CM and might lead to the development of new adjunctive treatment strategies.</p
    corecore