10,147 research outputs found
All-In Sustaining Cost Analysis: Pros and Cons
All-in sustaining cost is a metric used by mining companies to reflect the cost of gold mining in a consistent format useful to both investors and mining professionals. Cost reporting focused on the direct cost of mining and processing ore was summarized in the non-GAAP cash cost developed by the Gold Institute in 1996. In 2013, a group of mining companies, working with the World Gold Council, developed a more inclusive approach to reporting costs designed to solve the dilemma of showing a more comprehensive reflection of recurring costs involved in producing gold, without discouraging investors
On the derivation of Fourier's law in stochastic energy exchange systems
We present a detailed derivation of Fourier's law in a class of stochastic
energy exchange systems that naturally characterize two-dimensional mechanical
systems of locally confined particles in interaction. The stochastic systems
consist of an array of energy variables which can be partially exchanged among
nearest neighbours at variable rates. We provide two independent derivations of
the thermal conductivity and prove this quantity is identical to the frequency
of energy exchanges. The first derivation relies on the diffusion of the
Helfand moment, which is determined solely by static averages. The second
approach relies on a gradient expansion of the probability measure around a
non-equilibrium stationary state. The linear part of the heat current is
determined by local thermal equilibrium distributions which solve a
Boltzmann-like equation. A numerical scheme is presented with computations of
the conductivity along our two methods. The results are in excellent agreement
with our theory.Comment: 19 pages, 5 figures, to appear in Journal of Statistical Mechanics
(JSTAT
Review:Mitigating the risks posed by intensification in livestock production: the examples of antimicrobial resistance and zoonoses
Major shifts in how animals are bred, raised and slaughtered are involved in the intensification of livestock systems. Globally, these changes have produced major increases in access to protein-rich foods with high levels of micronutrients. Yet the intensification of livestock systems generates numerous externalities including environmental degradation, zoonotic disease transmission and the emergence of antimicrobial resistance (AMR) genes. Where the process of intensification is most advanced, the expertise, institutions and regulations required to manage these externalities have developed over time, often in response to hard lessons, crises and challenges to public health. By exploring the drivers of intensification, the foci of future intensification can be identified. Low- and middle-income (LMICs) countries are likely to experience significant intensification in livestock production in the near future; however, the lessons learned elsewhere are not being transferred rapidly enough to develop risk mitigation capacity in these settings. At present, fragmentary approaches to address these problems present an incomplete picture of livestock populations, antimicrobial use, and disease risks in LMIC settings. A worldwide improvement in evidence-based zoonotic disease and AMR management within intensifying livestock production systems demands better information on the burden of livestock-associated disease, antimicrobial use and resistance and resources allocated to mitigation.</p
iDNA from terrestrial haematophagous leeches as a wildlife surveying and monitoring tool - prospects, pitfalls and avenues to be developed
Invertebrate-derived DNA (iDNA) from terrestrial haematophagous leeches has recently been proposed as a powerful non-invasive tool with which to detect vertebrate species and thus to survey their populations. However, to date little attention has been given to whether and how this, or indeed any other iDNA-derived data, can be combined with state-of-the-art analytical tools to estimate wildlife abundances, population dynamics and distributions. In this review, we discuss the challenges that face the application of existing analytical methods such as site-occupancy and spatial capture-recapture (SCR) models to terrestrial leech iDNA, in particular, possible violations of key assumptions arising from factors intrinsic to invertebrate parasite biology. Specifically, we review the advantages and disadvantages of terrestrial leeches as a source of iDNA and summarize the utility of leeches for presence, occupancy, and spatial capture-recapture models. The main source of uncertainty that attends species detections derived from leech gut contents is attributable to uncertainty about the spatio-temporal sampling frame, since leeches retain host-blood for months and can move after feeding. Subsequently, we briefly address how the analytical challenges associated with leeches may apply to other sources of iDNA. Our review highlights that despite the considerable potential of leech (and indeed any) iDNA as a new survey tool, further pilot studies are needed to assess how analytical methods can overcome or not the potential biases and assumption violations of the new field of iDNA. Specifically we argue that studies to compare iDNA sampling with standard survey methods such as camera trapping, and those to improve our knowledge on leech (and other invertebrate parasite) physiology, taxonomy, and ecology will be of immense future value
Steady-state conduction in self-similar billiards
The self-similar Lorentz billiard channel is a spatially extended
deterministic dynamical system which consists of an infinite one-dimensional
sequence of cells whose sizes increase monotonically according to their
indices. This special geometry induces a nonequilibrium stationary state with
particles flowing steadily from the small to the large scales. The
corresponding invariant measure has fractal properties reflected by the
phase-space contraction rate of the dynamics restricted to a single cell with
appropriate boundary conditions. In the near-equilibrium limit, we find
numerical agreement between this quantity and the entropy production rate as
specified by thermodynamics
Spin orbit alignment for KELT-7b and HAT-P-56b via Doppler tomography with TRES
We present Doppler tomographic analyses for the spectroscopic transits of
KELT-7b and HAT-P-56b, two hot-Jupiters orbiting rapidly rotating F-dwarf host
stars. These include analyses of archival TRES observations for KELT-7b, and a
new TRES transit observation of HAT-P-56b. We report spin-orbit aligned
geometries for KELT-7b (2.7 +/- 0.6 deg) and HAT-P-56b (8 +/- 2 deg). The host
stars KELT-7 and HAT-P-56 are among some of the most rapidly rotating
planet-hosting stars known. We examine the tidal re-alignment model for the
evolution of the spin-orbit angle in the context of the spin rates of these
stars. We find no evidence that the rotation rates of KELT-7 and HAT-P-56 have
been modified by star-planet tidal interactions, suggesting that the spin-orbit
angle of systems around these hot stars may represent their primordial
configuration. In fact, KELT-7 and HAT-P-56 are two of three systems in
super-synchronous, spin-orbit aligned states, where the rotation periods of the
host stars are faster than the orbital periods of the planets.Comment: 9 pages, accepted for publication in MNRA
Log-periodic drift oscillations in self-similar billiards
We study a particle moving at unit speed in a self-similar Lorentz billiard
channel; the latter consists of an infinite sequence of cells which are
identical in shape but growing exponentially in size, from left to right. We
present numerical computation of the drift term in this system and establish
the logarithmic periodicity of the corrections to the average drift
Electromechanical characterization of a tissue-engineered myocardial patch derived from extracellular matrix
ObjectiveExtracellular matrix scaffolds have been successfully used for myocardial wall repair. However, regional functional evaluation (ie, contractility, electrical conductivity) of the extracellular matrix scaffold during the course of remodeling has been limited. In the present study, we evaluated the remodeled scaffold for evidence of electrical activation.MethodsThe extracellular matrix patch was implanted into the porcine right ventricular wall (n = 5) to repair an experimentally produced defect. Electromechanical mapping was performed with the NOGA system (Biosense Webster Inc, Diamond Bar, Calif) 60 days after implantation. Linear local shortening was recorded to assess regional contractility. After sacrifice, detailed histologic examinations were performed.ResultsHistologic examinations showed repopulation of the scaffold with cells, including a monolayer of factor VIII–positive cells in the endocardial surface and multilayered α-smooth muscle actin–positive cells beneath the monolayer cells. The α-smooth muscle actin–positive cells tended to be present at the endocardial aspect of the remodeled scaffold and at the border between the remodeled scaffold and the normal myocardium. Electromechanical mapping demonstrated that the patch had low-level electrical activity (0.56 ± 0.37 mV; P < .0001) in most areas and moderate activity (2.20 ± 0.70 mV; P < .0001) in the margin between the patch and the normal myocardium (7.58 ± 2.23 mV).ConclusionsThe extracellular matrix scaffolds were repopulated by α-smooth muscle actin–positive cells 60 days after implantation into the porcine heart. The presence of the cells corresponded to areas of the remodeling scaffold that showed early signs of electrical conductivity
Suspension polymerisation of vinyl chloride in presence of ultra fine filler particles
Polymer composites, filled with ultra fine particulate fillers, are alternatives to the conventional
filled polymers. The reinforcement of the mechanical properties occurs to a greater extent when
ultra fine particulate fillers are used in comparison with the conventional microdimensional fillers.
To achieve all the benefits that the ultra fine fillers can provide, optimal dispersion as primary
particles is essential. To achieve better dispersion of the inorganic particles in a polymer matrix,
the ultra fine particles (UFP) are added to the polymerisation reactor so that they are dispersed in
the monomer before polymerisation. Hence, the monomer is polymerised in the presence of the
UFP (in situ). In this paper the effects of the UFP on the initial monomer dispersion are examined.
The presence of the inorganic UFP in the polymerisation reactor influences the properties of the
monomer phase and affects the drop size distribution. This in turn influences the grain sizes as
well as their distribution, which influence the processability of the resin
- …