17 research outputs found

    Molecular Taxonomy of a Phantom Midge Species (Chaoborus flavicans) in Korea

    Get PDF
    The larvae of Chaoborus are widely distributed in lakes, ponds, and reservoirs. These omnivorous Chaoborus larvae are crucial predators and play a role in structuring zooplankton communities, especially for small-sized prey. Larvae of Chaoborus are commonly known to produce predator-induced polyphenism in Daphnia sp. Nevertheless, their taxonomy and molecular phylogeny are very poorly understood. As a fundamental study for understanding the role of Chaoborus in predator-prey interactions in a freshwater ecosystem, the molecular identification and phylogenetic relationship of Chaoborus were analyzed in this study. A molecular comparison based on partial mitochondrial cytochrome oxidase I (COI) between species in Chaoborus was carried out for the identification of Chaoborus larvae collected from 2 localities in Korea. According to the results, the Chaoborus species examined here was identified as C. flavicans, which is a lake-dwelling species. Furthermore, partial mitochondrial genome including COI, COII, ATP6, ATP8, COIII, and ND3 were also newly sequenced from the species and concatenated 5 gene sequences excluding ATP8 with another 9 dipteran species were compared to examine phylogenetic relationships of C. flavicans. The results suggested that Chaoborus was more related to the Ceratopogonidae than to the Culicidae. Further analysis based on complete mitochondrial DNA sequences and nuclear gene sequences will provide a more robust validation of the phylogenetic relationships of Chaoborus within dipteran lineages

    Comparative Transcriptome Analysis for Understanding Predator-Induced Polyphenism in the Water Flea Daphnia pulex

    No full text
    The crustacean Daphnia pulex is one of the best model organisms for studying inducible defense mechanisms due to their inducible morphology in response to the predator Chaoborus larvae. In this study, multiple developmental stages of D. pulex were exposed to C. flavicans larvae and transcriptome profiles of samples from late embryo to fifth instar were sequenced by the RNA-seq technique to investigate the genetic background underlying inducible defenses. In comparison, differentially expressed genes between defensive and normal morphs were identified, including 908 genes in late embryo, 1383 genes in the first-third (1–3) instar, and 1042 genes in fourth-fifth (4–5) instar. Gene ontology enrichment analysis showed that structural constituents of the cuticle and structural molecule activity genes were prominent up-regulated genes in late embryos. Down-regulated genes in late embryos and 1–3 instar comprised metabolic process, hydrolase activity, and peptidase activity gene classes. Pathway analysis indicated that small molecule neurotransmitter pathways were potentially involved in the development of inducible defenses. The characterization of genes and pathways in multiple developmental stages can improve our understanding of inducible defense responses of D. pulex to predation at the molecular level

    Common Obesity-Related Genetic Variants and Papillary Thyroid Cancer Risk

    No full text
    BACKGROUND: Epidemiologic studies have shown consistent associations between obesity and increased thyroid cancer risk, but, to date, no studies have investigated the relationship between thyroid cancer risk and obesity-related single nucleotide polymorphisms (SNPs). METHODS: We evaluated 575 tag SNPs in 23 obesity-related gene regions in a case-control study of 341 incident papillary thyroid cancer (PTC) cases and 444 controls of European ancestry. Logistic regression models, adjusted for attained age, year of birth, and sex were used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) with SNP genotypes, coded as 0, 1, and 2 and modeled continuously to calculate P-trends. RESULTS: Nine out of 10 top-ranking SNPs (P(trend)<0.01) were located in the FTO (fat mass and obesity associated) gene region, while the other was located in INSR (insulin receptor). None of the associations were significant after correcting for multiple testing. CONCLUSIONS: Our data do not support an important role of obesity-related genetic polymorphisms in determining the risk of PTC. IMPACT: Factors other than selected genetic polymorphisms may be responsible for the observed associations between obesity and increased PTC risk
    corecore