15,331 research outputs found

    The gaseous extent of galaxies and the origin of Lyman alpha absorption systems. IV: Lyman alpha absorbers arising in a galaxy group

    Full text link
    We present new GHRS observations of Lyman alpha absorption lines associated with a group of galaxies towards the QSO 1545+2101. We have identified eight distinct Lyman alpha absorption features in the spectrum of QSO 1545+2101 at a mean redshift of z=0.2648 with a velocity dispersion of 163 km/s. A group of galaxies is detected in the vicinity of this QSO at a mean redshift of z=0.2645 and velocity dispersion 239 km/s. The identification of discrete absorption systems indicates that they arise in clouds of neutral hydrogen rather than in a diffuse intragroup medium. Our analysis suggests that the Lyman alpha absorption lines are associated with individual galaxies in the group, although a one-to-one relationship between absorbers and galaxies is difficult to establish in such a dense environment.Comment: 16 pages, 3 figures. Accepted for publication in Ap

    Binarity in Cool Asymptotic Giant Branch Stars: A Galex Search for Ultraviolet Excesse

    Get PDF
    The search for binarity in AGB stars is of critical importance for our understanding of how planetary nebulae acquire the dazzling variety of aspherical shapes which characterises this class. However, detecting binary companions in such stars has been severely hampered due to their extreme luminosities and pulsations. We have carried out a small imaging survey of AGB stars in ultraviolet light (using GALEX) where these cool objects are very faint, in order to search for hotter companions. We report the discovery of significant far-ultraviolet excesses towards nine of these stars. The far-ultraviolet excess most likely results either directly from the presence of a hot binary companion, or indirectly from a hot accretion disk around the companion.Comment: revised for Astrophysical Journa

    Transverse Meissner Physics of Planar Superconductors with Columnar Pins

    Get PDF
    The statistical mechanics of thermally excited vortex lines with columnar defects can be mapped onto the physics of interacting quantum particles with quenched random disorder in one less dimension. The destruction of the Bose glass phase in Type II superconductors, when the external magnetic field is tilted sufficiently far from the column direction, is described by a poorly understood non-Hermitian quantum phase transition. We present here exact results for this transition in (1+1)-dimensions, obtained by mapping the problem in the hard core limit onto one-dimensional fermions described by a non-Hermitian tight binding model. Both site randomness and the relatively unexplored case of bond randomness are considered. Analysis near the mobility edge and near the band center in the latter case is facilitated by a real space renormalization group procedure used previously for Hermitian quantum problems with quenched randomness in one dimension.Comment: 23 pages, 22 figure

    A Gravitational Wave Background from Reheating after Hybrid Inflation

    Get PDF
    The reheating of the universe after hybrid inflation proceeds through the nucleation and subsequent collision of large concentrations of energy density in the form of bubble-like structures moving at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic background of gravitational waves, whose time evolution is determined by the successive stages of reheating: First, tachyonic preheating makes the amplitude of gravity waves grow exponentially fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions finally sets the end of gravitational waves production. From then on, these waves propagate unimpeded to us. We find that the fraction of energy density today in these primordial gravitational waves could be significant for GUT-scale models of inflation, although well beyond the frequency range sensitivity of gravitational wave observatories like LIGO, LISA or BBO. However, low-scale models could still produce a detectable signal at frequencies accessible to BBO or DECIGO. For comparison, we have also computed the analogous gravitational wave background from some chaotic inflation models and obtained results similar to those found by other groups. The discovery of such a background would open a new observational window into the very early universe, where the details of the process of reheating, i.e. the Big Bang, could be explored. Moreover, it could also serve in the future as a new experimental tool for testing the Inflationary Paradigm.Comment: 22 pages, 18 figures, uses revtex

    How to generate pentagonal symmetry using Turing systems

    Get PDF
    We explore numerically the formation of Turing patterns in a confined circular domain with small aspect ratio. Our results show that stable fivefold patterns are formed over a well defined range of disk sizes, offering a possible mechanism for inducing the fivefold symmetry observed in early development of regular echinoids. Using this pattern as a seed, more complex biological structures can be mimicked, such as the pigmentation pattern of sea urchins and the plate arrangements of the calyxes of primitive camerate crinoids

    Reflection and transmission of waves in surface-disordered waveguides

    Get PDF
    The reflection and transmission amplitudes of waves in disordered multimode waveguides are studied by means of numerical simulations based on the invariant embedding equations. In particular, we analyze the influence of surface-type disorder on the behavior of the ensemble average and fluctuations of the reflection and transmission coefficients, reflectance, transmittance, and conductance. Our results show anomalous effects stemming from the combination of mode dispersion and rough surface scattering: For a given waveguide length, the larger the mode transverse momentum is, the more strongly is the mode scattered. These effects manifest themselves in the mode selectivity of the transmission coefficients, anomalous backscattering enhancement, and speckle pattern both in reflection and transmission, reflectance and transmittance, and also in the conductance and its universal fluctuations. It is shown that, in contrast to volume impurities, surface scattering in quasi-one-dimensional structures (waveguides) gives rise to the coexistence of the ballistic, diffusive, and localized regimes within the same sample.Comment: LaTeX (REVTeX), 12 pages with 14 EPS figures (epsf macro), minor change
    • …
    corecore