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Instituto de F́ısica Teórica CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

(Dated: November 26th, 2007)

The reheating of the universe after hybrid inflation proceeds through the nucleation and subse-
quent collision of large concentrations of energy density in the form of bubble-like structures moving
at relativistic speeds. This generates a significant fraction of energy in the form of a stochastic
background of gravitational waves, whose time evolution is determined by the successive stages of
reheating: First, tachyonic preheating makes the amplitude of gravity waves grow exponentially
fast. Second, bubble collisions add a new burst of gravitational radiation. Third, turbulent motions
finally sets the end of gravitational waves production. From then on, these waves propagate unim-
peded to us. We find that the fraction of energy density today in these primordial gravitational
waves could be significant for GUT-scale models of inflation, although well beyond the frequency
range sensitivity of gravitational wave observatories like LIGO, LISA or BBO. However, low-scale
models could still produce a detectable signal at frequencies accessible to BBO or DECIGO. For
comparison, we have also computed the analogous gravitational wave background from some chaotic
inflation models and obtained results similar to those found by other groups. The discovery of such
a background would open a new observational window into the very early universe, where the details
of the process of reheating, i.e. the Big Bang, could be explored. Moreover, it could also serve in
the future as a new experimental tool for testing the Inflationary Paradigm.

I. INTRODUCTION

Gravitational waves (GW) are ripples in space-time
that travel at the speed of light, and whose emission by
relativistic bodies represents a robust prediction of Gen-
eral Relativity. The change in the orbital period of a
binary pulsar known as PSR 1913+16 was used by Hulse
and Taylor [1] to obtain indirect evidence of their ex-
istence. Although gravitational radiation has not been
directly detected yet, it is expected that the present uni-
verse should be permeated by a diffuse background of
GW of either an astrophysical or cosmological origin [2].
Astrophysical sources, like the gravitational collapse of
supernovae or the neutron star and black hole bina-
ries’ coalescence, produce a stochastic gravitational wave
background (GWB) which can be understood as com-
ing from unresolved point sources. On the other hand,
among the backgrounds of cosmological origin, we find
the approximately scale-invariant background produced
during inflation [3], or the GWB generated at hypothet-
ical early universe thermal phase transitions, from rel-
ativistic motions of turbulent plasmas or from the de-
cay of cosmic strings [2]. Fortunately, these backgrounds
have very different spectral shapes and amplitudes that
might, in the future, allow gravitational wave observa-
tories like the Laser Interferometer Gravitational Wave
Observatory (LIGO) [4], the Laser Interferometer Space
Antenna (LISA) [5], the Big Bang Observer (BBO) [6]
or the Decihertz Interferometer Gravitational Wave Ob-
servatory (DECIGO) [7], to disentangle their origin [2].
Unfortunately, due to the weakness of gravity, this task
will be extremely difficult, requiring a very high accuracy
in order to distinguish one background from another. It is
thus important to characterize as many different sources
of GW as possible.

There are, indeed, a series of constraints on some of
these backgrounds, the most stringent one coming from
the large-scale polarization anisotropies in the Cosmic
Microwave Background (CMB), which may soon be mea-
sured by Planck [8], if the scale of inflation is sufficiently
high. There are also constraints coming from Big Bang
nucleosynthesis [9], since such a background would con-
tribute as a relativistic species to the expansion of the
universe and thus increase the light element abundance.
There is also a constraint coming from millisecond pul-
sar timing [10]. Furthermore, it has recently been pro-
posed a new constraint on a GWB coming from CMB
anisotropies [11]. Most of these constraints come at very
low frequencies, typically from 10−18 Hz to 10−8 Hz,
while present GW detectors work at frequencies of or-
der 1-100 Hz, and planned observatories will range from
10−3 Hz of LISA to 103 Hz of Advanced-LIGO [2, 4]. If
early universe phenomena like first order phase transi-
tions [12, 13] or cosmic turbulence [14] occurred around
the electro-weak (EW) scale, there is a chance than the
GW detectors will measure the corresponding associated
backgrounds. However, if such early universe processes
occurred at the GUT scale, their corresponding back-
grounds will go undetected by the actual detectors, since
these cannot reach the required sensitivity in the high
frequency range of 107 − 109 Hz, corresponding to the
size of the causal horizon at that time. There are how-
ever recent proposals to cover this range [15], which may
become competitive in the near future.

Moreover, present observations of the CMB
anisotropies and the Large Scale Structure (LSS)
distribution of matter seem to suggest that something
like Inflation must have occurred in the very early uni-
verse. We ignore what drove inflation and at what scale
it took place. However, approximately scale-invariant
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density perturbations, sourced by quantum fluctuations
during inflation, seem to be the most satisfying expla-
nation for the CMB anisotropies. Together with such
scalar perturbations one also expects tensor perturba-
tions (GW) to be produced, with an almost scale-free
power spectra [3]. Because of the weakness of gravity,
this primordial inflationary GWB should decouple from
the rest of matter as soon as it is produced, and move
freely through the Universe till today. At present,
the biggest efforts employed in the search for these
primordial GW come from the indirect effect that this
background has on the B-mode polarization anisotropies
of the CMB [8], rather than via direct detection. The
detection of such a background is crucial for early
universe cosmology because it would help to determine
the absolute energy scale of inflation, a quantity that
for the moment is still uncertain, and would open the
exploration of physics at very high energies.

In the early universe, after inflation, other backgrounds
of GW could have been produced at shorter wavelengths,
in a more ’classical’ manner, rather than sourced by
quantum fluctuations. In particular, whenever there are
large and fast moving inhomogeneities in the matter dis-
tribution, one expects the emission of GW. This is much
like the situation in classical electrodynamics, but with
some differences. At large distances from the source, the
amplitude of the electromagnetic field Ai is expressed
as the first derivative of the dipole moment di of the
charge distribution of the source, Ai ≃ ḋi/cr, while the
amplitude of the GW is given by the second deriva-
tive of the quadrupole moment of the mass distribution,
hij ≃ GQ̈ij/c

4r. In both cases, the larger the velocity
of the matter/charge distribution, the larger the ampli-
tude of the radiation produced. Nevertheless, the main
difference between the two cases is the weakness of the
strength of gravity to that of electromagnetism. Thus,
in order to produce a significant amount of gravitational
radiation, it is required that the motion of huge masses
occurs at speeds close to that of light for the case of astro-
physical sources, or a very fast motion and high density
contrasts in the continuous matter distribution for the
case of cosmological sources. In fact, this is believed to
be the situation at the end of inflaton, during the con-
version of the huge energy density driving inflation into
radiation and matter at the so-called reheating of the
Universe [16]. Such an event corresponds to the actual
Big Bang of the Standard Cosmological Model.

Note that any background of GW coming from the
early universe, if generated below Planck scale, immedi-
ately decoupled upon production, as can be easily under-
stood by the following dimensional analysis argument.
Assuming that gravitons were in thermal equilibrium
with the early universe plasma, at a temperature T , the
gravitons’ cross section should be of order σ ∼ G2T 2.
Then, given the graviton number density n ∼ T 3 and
velocity v = 1, the gravitons’ interaction rate should
be Γ = 〈nσv〉 ∼ T 5/M4

p . Since the Hubble rate is

H ∼ T 2/Mp, then Γ ∼ H (T/Mp)
3, so gravitons could

not be kept in equilibrium with the surrounding plasma
for T < Mp. Therefore, GW produced well after Planck
scale will always be decoupled from the plasma, and
whatever their spectral signatures, they will retain their
shape throughout the expansion of the Universe. Thus,
the characteristic frequency and shape of the GWB gen-
erated at a given time should contain information about
the very early state of the Universe in which they were
produced. Actually, it is conceivable that, in the not
so far future, the detection of these GW backgrounds
could be the only way we may have to infer the physi-
cal conditions of the Universe at such high energy scales,
which certainly no particle collider will ever reach. How-
ever, the same reason that makes GW ideal probes of the
early universe − the weakness of gravity −, is responsible
for the extreme difficulties we have for their detection on
Earth. For an extensive discussion see Ref. [17].

In a recent letter [18] we described the stochastic back-
ground predicted to arise from reheating after hybrid in-
flation. In this paper we study in detail the various pro-
cesses involved in the production of such a background,
whose detection could open a new window into the very
early universe. In the future, this background could also
serve as a new tool to discriminate among different in-
flationary models, as each of these would give rise to a
different GWB with very characteristic spectral features.
The first stage of the energy conversion at the end of
inflation, preheating [16], is known to be explosive and
extremely violent, and quite often generates in less than
a Hubble time the huge entropy measured today. The
details of the dynamics of preheating depend very much
on the model and are often very complicated because of
the non-linear, non-perturbative and out-of-equilibrium
character of the process itself. However, all the cases have
in common that only specific resonance bands of the fields
suffer an exponential instability, which makes their occu-
pation numbers grow by many orders of magnitude. The
shape and size of the spectral bands depend very much on
the inflationary model. If one translates this picture into
position-space, the highly populated modes correspond
to large time-dependent inhomogeneities in the matter
distributions which acts, in fact, as the source of GW we
are looking for.

For example, in single field chaotic inflation models,
the coherent oscillations of the inflaton during preheat-
ing generates, via parametric resonance, a population of
highly occupied modes that behave like waves of mat-
ter. They collide among themselves and their scattering
leads to homogenization and local thermal equilibrium.
These collisions occur in a highly relativistic and very
asymmetric way, being responsible for the generation of
a stochastic GWB [21, 22, 23] with a typical frequency
today of the order of 107 − 109 Hz, corresponding to the
present size of the causal horizon at the end of high-scale
inflation. There is at present a couple of experiments
searching for such a background, see Refs. [15], based of
laser interferometry, as well as by resonant superconduct-
ing microwave cavities [26].
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However, there are models like hybrid inflation in
which the end of inflation is sudden [27] and the con-
version into radiation occurs almost instantaneously. In-
deed, since the work of Ref. [28] we know that hybrid
models preheat in an even more violent way than chaotic
inflation models, via the spinodal instability of the sym-
metry breaking field that triggers the end of inflation,
irrespective of the couplings that this field may have to
the rest of matter. Such a process is known as tachyonic

preheating [28, 29] and could be responsible for copious
production of dark matter particles [30], lepto and baryo-
genesis [31], topological defects [28], primordial magnetic
fields [32], etc.

It was speculated in Ref. [22] that in (low-scale) mod-
els of hybrid inflation it might be possible to generate
a stochastic GWB in the frequency range accessible to
present detectors, if the scale of inflation was as low as
Hinf ∼ 1 TeV. However, the amplitude was estimated
using the parametric resonance formalism of chaotic pre-
heating, which may not be applicable in this case. In
Ref. [29] (from now on referred to as paper I), it was
shown that the process of symmetry breaking proceeds
via the nucleation of dense bubble-like structures mov-
ing at the speed of light, which collide and break up into
smaller structures (see Figs. 7 and 8 of paper I). We con-
jectured at that time that such collisions would be a very
strong source of GW, analogous to the GW production
associated with strongly first order phase transitions [12].
As we will show in this paper, this is indeed the case dur-
ing the nucleation, collision and subsequent rescattering
of the initial bubble-like structures produced after hybrid
inflation. During the different stages of reheating in this
model, gravity waves are generated and amplified until
the Universe finally thermalizes and enters into the initial
radiation era of the Standard Model of Cosmology. From
that moment until now, during the whole thermal history
of the expansion of the universe, this cosmic GWB will
be redshifted as a radiation-like fluid, totally decoupled
from any other energy-matter content of the universe,
such that today’s ratio of energy stored in these GW
to that in radiation, could range from Ω

GW
h2 ∼ 10−8,

peacked around f ∼ 107 Hz for the high-scale models,
to Ω

GW
h2 ∼ 10−11, peacked around f ∼ 1 Hz for the

low-scale models.

Finally, let us mention that since the first paper by
Khlebnikov and Tkachev [21], studing the GWB pro-
duced at reheating after chaotic inflation, it seems ap-
propriate to reanalyze this topic in a more detailed way.
The idea was extended to hybrid inflation in [22], but
within the parametric resonance formalism. It was also
revisited very recently in Ref. [23, 24] for the λφ4 and
m2φ2 chaotic scenarios, and reanalysed again for hybrid
inflation in Ref. [18], this time using the new formalism
of tachyonic preheating [28, 29]. Because of the increase
in computer power of the last few years, we are now able
to perform precise simulations of the reheating process
in a reasonable time scale. Moreover, understanding of
reheating has improved, while gravitational waves detec-

tors are beginning to attain the aimed sensitivity [4]. Fur-
thermore, since these cosmic GWBs could serve as a deep
probe into the very early universe, we should character-
ize in the most detailed way the information that we will
be able to extract from them.

The paper is divided as follows. In Section II we briefly
review the hybrid model of inflation. Section III is dedi-
cated to our approach for extracting the power spectrum
of GW from reheating. In section IV, we give a detailed
account of the lattice simulations performed with two
codes: our own FORTRAN parallelized computer code
(running in the MareNostrum supercomputer [33] and
in our UAM-IFT cluster [34]), as well as with a modi-
fied version of the publicly available C++ package LAT-
TICEEASY [35]. Section V is dedicated to study the spa-
tial distribution of the production of gravitational waves.
In Section VI, we reproduce as a crosscheck, some of the
results of [21, 23, 25] concerning the GWB produced at
reheating after chaotic inflation models. Finally, in sec-
tion VII, we give our conclusions and perspectives for the
future.

II. THE HYBRID MODEL

Hybrid inflation models [27] arise in theories of par-
ticle physics with symmetry breaking fields (’Higgses’)
coupled to flat directions, and are present in many ex-
tensions of the Standard Model, both in string theory
and in supersymmetric theories [19]. The potential in
these models is given by

V (Φ, χ) = λ

(

Φ†Φ − v2

2

)2

+ g2χ2Φ†Φ +
1

2
µ2χ2 , (1)

where the contraction Φ†Φ should be understood as the
trace TrΦ†Φ = 1

2 |φ|2. Inflation occurs along the lifted
flat direction, satisfying the slow-roll conditions thanks to
a large vacuum energy ρ0 = λv4/4. Inflation ends when
the inflaton χ falls below a critical value and the sym-
metry breaking field φ acquires a negative mass squared,
which triggers the breaking of the symmetry and ends in
the true vacuum, |φ| = v, within a Hubble time. These
models do not require small couplings in order to gener-
ate the observed CMB anisotropies; e.g. a working model
with GUT scale symmetry breaking, v = 10−3MP , with
a Higgs self-coupling λ and a Higgs-inflaton coupling
g given by g =

√
2λ = 0.05, satisfies all CMB con-

straints [20], and predicts a tiny tensor contribution to
the CMB polarization. The main advantage of hybrid
models is that, while most chaotic inflation models can
only occur at high scales, with Planck scale values for the

inflaton, and V
1/4
inf ∼ 1016 GeV, one can choose the scale

of inflation in hybrid models to range from GUT scales
all the way down to GeV scales, while the Higgs v.e.v.

can range from Planck scale, v = MP , to the Electroweak
scale, v = 246 GeV, see Ref. [27, 31].

There are a series of constraints that a hybrid infla-
tion model should satisfy in order to be in agreement
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with observations. First of all, inflation should end in
less than one e-fold, otherwise unacceptable black holes
would form [36]. This can be written as the waterfall

condition [27], λmM2
P ≫M3, which becomes

m

M
≫ v2

M2
P

. (2)

Then there is the condition, known as the COBE normal-
ization, that the scalar amplitude should satisfy AS =
H2/2πφ̇ ≃ 5 × 10−5, which gets translated into

g = (n− 1)
MP

v

√

3π

8
× 10−4 e(n−1)N/2 (3)

as well as the spectral tilt,

n− 1 =
1

π

m2

M2

M2
P

v2
< 0.05 (4)

and finally the fact that we have not seen so far any
tensor (gravitational wave) contribution in the CMB
anisotropies, r = A2

T /A
2
S < 0.3, imposes the constraint

λ1/4 < 2 × 10−3 MP

v
. (5)

Taking all these conditions together, we find that a
model with v = 0.1MP is probably ruled out, while one
with v = 0.01MP is perfectly consistent with all ob-
servations, and with reasonable values of the coupling
constants, e.g. g = 4 × 10−4 and λ = 10−3. How-
ever, the lower is the scale of inflation, the more diffi-
cult it is to accommodate the amplitude of the CMB
anisotropies with reasonable values of the parameters.
For a scale of inflation as low as 1011 GeV, one must
significantly finetune the couplings, although there are
low scale models based on supersymmetric extensions of
the standard model which can provide a good match to
observations [37].

In the following sections we will show how efficient
is the production of GW at reheating after hybrid in-
flation, using both analytical estimates and numerical
simulations to derive the amplitude of the present day
GWB. Reheating in hybrid inflation [27] goes through
four well defined regimes: first, the exponential growth
of long wave modes of the Higgs field via spinodal in-
stability, which drives the explosive growth of all parti-
cles coupled to it, from scalars [28] to gauge fields [31]
and fermions [30]; second, the nucleation and collision
of high density contrast and highly relativistic bubble-
like structures associated with the peaks of a Gaussian
random field like the Higgs, see paper I; third, the tur-
bulent regime that ensues after all these ‘bubbles’ have
collided and the energy density in all fields cascades to-
wards high momentum modes; finally, thermalization of
all modes when local thermal and chemical equilibrium
induces equipartition. The first three stages can be stud-
ied in detailed lattice simulations thanks to the semi-
classical character of the process of preheating [38], while
the last stage is intrinsically quantum and has never been
studied in the lattice.

III. GRAVITATIONAL WAVE PRODUCTION

Our main purpose in this paper is to study the details
of the stochastic GWB produced during the reheating of
the universe after hybrid inflation (sections III, IV and
V). However, we also study, albeit very briefly, the anal-
ogous background from reheating in some simple chaotic
models (section VI). Thus, in this section we derive a
general formalism for extracting the GW power spectrum
in any scenario of reheating within the (flat) Friedman-
Robertson-Walker (FRW) universe. The formalism will
be simplified when applied to scenarios in which we can
neglect the expansion of the universe, like in the case of
most Hybrid models.

A theory with an inflaton scalar field χ interacting with
other Bose fields φa, can be described by

L =
1

2
∂µχ∂

µχ+
1

2
∂µφa∂

µφa +
R

16πG
− V (φ, χ) (6)

with R the Ricci scalar. For hybrid models, we consider
a generic symmetry breaking ‘Higgs’ field with Nc real
components. Thus, we can take Φ†Φ = 1

2

∑

a φ
2
a ≡ |φ|2/2

in (1), with a running for the number of Higgs’ compo-
nents, e.g. Nc = 1 for a real scalar Higgs, Nc = 2 for a
complex scalar Higgs or Nc = 4 for a SU(2) Higgs, etc.
The effective potential (1) then becomes

V (φ, χ) =
λ

4

(

|φ|2 − v2
)2

+ g2χ2|φ|2 +
1

2
µ2χ2 . (7)

For chaotic scenarios, we consider a massless scalar field
interacting with the inflaton via

V (χ, φ) =
1

2
g2χ2φ2 + V (χ) , (8)

with V (χ) the inflaton’s potential. Concerning the sim-
ulations we show in this paper, we concentrate in the
Nc = 4 case for the hybrid model and consider a poten-
tial V (χ) = λ

4χ
4 for the chaotic scenario.

The classical equations of motion of the inflaton and
the other Bose fields are

χ̈+ 3Hχ̇− 1

a2
∇2χ+

∂V

∂χ
= 0 (9)

φ̈a + 3Hφ̇a − 1

a2
∇2φa +

∂V

∂φa
= 0 (10)

with H = ȧ/a.
Gravitational Waves are represented here by a

transverse-traceless (TT) gauge-invariant metric pertur-
bation, hij , on top of the flat FRW space

ds2 = −dt2 + a2(t) (δij + hij) dx
idxj , (11)

with a(t) the scale factor and the tensor perturbations
verifying ∂ihij = hii = 0. In the following, we will raise
or low indices of the metric perturbations with the delta
Kronecker δij , so hij = hi

j = hij and so on. The Ein-
stein field equations can be splitted into the background
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G
(0)
µν = 8πGT

(0)
µν and the perturbed δGµν = 8πGδTµν

equations. The background equations describe the evo-
lution of the flat FRW universe through

− Ḣ

4πG
= χ̇2 +

1

3a2
(∇χ)2 + φ̇2

a +
1

3a2
(∇φa)2 (12)

3H2

4πG
= χ̇2 +

1

a2
(∇χ)2 + φ̇2

a +
1

a2
(∇φa)2 + 2V (χ, φ)

(13)

where any term in the r.h.s. of (12) and (13), should be
understood as spatially averaged.

On the other hand, the perturbed Einstein equations
describe the evolution of the tensor perturbations [39] as

ḧij + 3Hḣij −
1

a2
∇2hij = 16πGΠij , (14)

with ∂iΠij = Πii = 0. The source of the GW, Πij , con-
tributed by both the inflaton and the other scalar fields,
will be just the transverse-traceless part of the (spatial-
spatial) components of the total anisotropic stress-tensor

Tµν =
1

a2
[∂µχ∂νχ+ ∂µφa∂νφa + gµν(L − 〈p〉)] , (15)

where L(χ, φa) is the lagrangian (6) and 〈p〉 is the back-
ground homogeneous pressure. As we will explain in the
next subsection, when extracting the TT part of (15),
the term proportional to gµν in the r.h.s of (15), will be
dropped out from the GW equations of motion. Thus,
the effective source of the GW will be just given by the
TT part of the gradient terms ∂µχ∂νχ+ ∂µφa∂νφa.

In summary, Eqs. (9)-(10), together with Eqs. (12)-
(13), describe the coupled dynamics of reheating in any
inflationary scenario, while Eq. (14) describe the pro-
duction of GW in each of those scenarios. In this pa-
per we use lattice simulations to study the generation
of GW during reheating after inflation. Specific details
on this are given in section IV, but let us just mention
here that our approach is to solve the evolution of the
gravitational waves simultaneously with the dynamics of
the scalar fields, in a discretized lattice with periodic
boundary conditions. We assume initial quantum fluc-
tuations for all fields and only a zero mode for the infla-
ton. Moreover, we also included the GW backreaction
on the scalar fields’ evolution via the gradient terms,
hij∇iχ∇jχ + hij∇iφa∇jφa and confirmed that, for all
practical purposes, these are negligible throughout GW
production.

A. The Transverse-Traceless Gauge

A generic (spatial-spatial) metric perturbation δhij has
six independent degrees of freedom, whose contributions
can be split into scalar, vector and tensor metric pertur-
bations [39]

δhij = ψ δij + E,ij + F(i,j) + hij . (16)

with ∂iFi = 0 and ∂ihij = hii = 0. By choosing a
transverse-traceless stress-tensor source Πij , we can elim-
inate all the degrees of freedom (d.o.f.) but the pure TT
part, hij , which represent the only physical d.o.f which
propagate and carry energy out of the source (GW). If
we had chosen only a traceless but non-transverse stress
source, we could have eliminated the scalar d.o.f. ψ and
absorbed E into the scalar field perturbation, but we
would still be left with a vector field Fi also sourced by
the (traceless but non-transverse) anisotropic stress ten-
sor, thus giving rise to a vorticity divergence-less field
Vi. However, since the initial conditions are those of a
scalar Gaussian random field (see section IV), even in
that case of a non-transverse but traceless stress source,
the mean vorticity of the subsequent matter distribution,
averaged over a sufficiently large volume, should be zero
(although locally we do have vortices of the Higgs field,
see Refs. [31, 32]), since vortices with opposite chirality
cancel eachother. This means that in such a case, al-
though ∂iΠij 6= 0, and thus ∂iδhij 6= 0, we could still re-
cover the TT component when averaging over the whole
realization.

For practical purposes, we will consider from the beg-
gining the TT part of the anisotropic stress-tensor, ensur-
ing this way that we only source the physical d.o.f. that
represent GW. The equations of motion of the TT metric
perturbations are then given by Eq. (14). Note that for
a non-transverse source the equations would have been
much more complicated, so the advantage of using the
TT part from the beginning is clear. The disadvantage
arises because obtaining the TT part of a tensor in config-
uration space is very demanding in computational time.
However, as we explain next, we will use a method by
which we can circunvent this issue.

Let us switch to Fourier space. Using the convention

f(k) =
1

(2π)3/2

∫

d3x e+ikxf(x) , (17)

the GW equations (14) in Fourier space read

ḧij(t,k) + 3Hḣij(t,k) +
k2

a2
hij(t,k) = 16πGΠij(t,k) ,

(18)

where k = |k|. Assuming no GW at the beginnig of re-
heating (i.e. the end of inflation te), the initial conditions

are hij(te) = ḣij(te) = 0, so the solution to Eq. (18) for
t > te will be just given by a causal convolution with an
appropriate green function G(t, t′),

hij(t,k) = 16πG

∫ t

te

dt′G(t, t′)Πij(t
′,k) (19)

Therefore, all we need to know for computing the GW is
the TT part of the stress-tensor, Πij , and the Green func-
tion G(t′, t). However, as we will demonstrate shortly, we
have used a numerical method by which we don’t even
need to know the actual form of G(t′, t). To see this, let
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us extract the TT part of the total stress-tensor. Given
the symmetric anisotropic stress-tensor Tµν (15), we can
easily obtain the TT part of its spatial components in
momentum space, Πij(k). Using the spatial projection

operators Pij = δij − k̂ik̂j , with k̂i = ki/k, then [40]

Πij(k) = Λij,lm(k̂)Tlm(k) , (20)

where

Λij,lm(k̂) ≡
(

Pil(k̂)Pjm(k̂) − 1

2
Pij(k̂)Plm(k̂)

)

. (21)

Thus, one can easily see that, at any time t, kiΠij(k̂, t) =

Πi
i(k̂, t) = 0, as required, thanks to the identities Pij k̂j =

0 and PijPjm = Pim.
Note that the TT tensor, Πij , is just a linear combi-

nation of the components of non-traceless nor-transverse
tensor Tij (15), while the solution (19) is just linear in
Πij . Therefore, we can write the TT tensor perturbations
(i.e. the gravitational waves) as

hij(t,k) = Λij,lm(k̂)uij(t,k) , (22)

with uij(t,k) the Fourier transform of the solution of the
following equation

üij + 3Hu̇ij −
1

a2
∇2uij = 16πGTij (23)

This Eq. (23) is nothing but Eq. (14), sourced with the
complete Tij (15), instead of with its TT part, Πij . Of
course, Eq. (23) contains unphysical (gauge) d.o.f.; how-
ever, in order to obtain the real physical TT d.o.f., hij , we
can evolve Eq.(23) in configuration space, Fourier trans-
form its solution and apply the projector (21) as in (22).
This way we can obtain in momentum space, at any mo-
ment of the evolution, the physical TT d.o.f. that repre-
sent GW, hij . Whenever needed, we can Fourier trans-
form back to configuration space and obtain the spatial
distribution of the gravitational waves.

Moreover, since the second term of the r.h.s of the
total stress-tensor Tij is proportional to gij = δij + hij ,
see (15), when aplying the TT projector (21), the part
with the δij just drops out, simply because it is a pure
trace, while the other part contributes with a term −(L−
〈p〉)hij in the l.h.s of Eq.(18). However, (L − 〈p〉) is of
the same order as the metric perturbation ∼ O(h), so this
extra term is second order in the gravitational coupling
and it can be neglected in the GW Eqs. (18). This way,
the effective source in Eq. (23) is just the gradient terms
of both the inflaton and the other scalar fields,

Tij =
1

a2
(∇iχ∇jχ+ ∇iφa∇jφa) (24)

Therefore, the effective source of the physical GW, will
be just the TT part of (24), as we had already mentioned
before.

Alternatively, one could evolve the equation of the TT
tensor perturbation in configuration space, Eq. (14), with
the source given by

Πij(x, t) =
1

(2π)3/2

∫

d3k e−ikxΛij,lm(k̂)Tlm(k, t) , (25)

such that ∂iΠij(x, t) = Πii(x, t) = 0 at any time. So, at
each time step of the evolution of the fields, one would
have first to compute (the gradient part of) Tlm (24) in
configuration space, then Fourier transform it to momen-
tum space, substitute in Eq. (25) and perform the inte-
gral. However, proceeding as we suggested above, there
is no need to perform the integral, nor Fourier transform
the fields at each time step, but rather only at those times
at which we want to measure the GW spectrum. The vi-
ability of our method relies in the following observation.
To compute the GW we could, first of all, project the
TT part of the source (25), and second, solve Eq. (14).
However, we achieve the same result if we commute these
two operations such that, first, we solve Eq. (23), and sec-
ond, we apply the TT projector to the solution (22). We
have found this commuting procedure very useful, since
we are able to extract the spectra or the spatial distri-
bution of the GW at any desired time, saving a great
amount of computing time. Most importantly, with this
procedure we can take into account backreaction simul-
taneously with the fields evolution.

In summary, for solving the dynamics of reheating of
a particular inflationary model, we evolve Eqs. (9)-(10)
in the lattice, together with Eqs. (12)-(13), while for
the GWs we solve Eq. (23). Then, only when required,
we Fourier transform the solution of Eq. (23) and then
apply (22) in order to recover the physical transverse-
traceless d.o.f representing the GW. From there, one can
easily build the GW spectra or take a snapshot of spatial
distribution of the gravitational waves.

B. The energy density in GW

The energy-momentum tensor of the GW is given
by [40]

tµν =
1

32πG

〈

∂µhij ∂νh
ij

〉

V
, (26)

where hij are the TT tensor perturbations solution of
Eq.(14). The expectation value 〈...〉V is taken over a
region of sufficiently large volume V = L3 to encompass
enough physical curvature to have a gauge-invariant mea-
sure of the GW energy-momentum tensor.

The GW energy density will be just ρ
GW

= t00, so

ρGW =
1

32πG

1

L3

∫

d3x ḣij(t,x)ḣij(t,x)

=
1

32πG

1

L3

∫

d3k ḣij(t,k)ḣ∗ij(t,k) , (27)

where in the last step we Fourier transformed each
ḣij and used the integral definition of the Dirac delta

(2π)3δ(3)(k) =
∫

d3x e−ikx.
We can always write the scalar product in (27) in terms

of the (Fourier transformed) solution ulm of the Eq.(23),
by just using the spatial projectors (21)

ḣij ḣij = Λij,lmΛij,rsu̇lmu̇rs = Λlm,rsu̇lmu̇rs , (28)
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where we have used the fact that Λij,lmΛlm,rs = Λij,rs.
This way, we can express the GW energy density as

ρGW =
1

32πGL3
×

∫

k2dk

∫

dΩ Λij,lm(k̂)u̇ij(t,k)u̇∗lm(t,k). (29)

From here, we can also compute the power spectrum per
logarithmic frequency interval in GW, normalized to the
critical density ρc, as

Ω
GW

=

∫

df

f
Ω

GW
(f) , (30)

where

Ωgw(k) ≡ 1

ρc

dρgw

d logk

=
k3

32πGL3ρc

∫

dΩ Λij,lm(k̂)u̇ij(t,k)u̇∗lm(t,k) (31)

We have checked explicitely in the simulations that the
argument of the angular integral of (31) is independent
of the directions in k-space. Thus, whenever we plot
the GW spectrum of any model, we will be showing the
amplitude of the spectrum (per each mode k) as obtained
after avaraging over all the the directions in momentum
space,

Ωgw(k) =
k3

8GL3ρc

〈

Λij,lm(k̂)u̇ij(t,k)u̇∗lm(t,k)
〉

4π
(32)

where 〈f〉4π ≡ 1
4π

∫

fdΩ.
Finally, we must address the fact that the frequency

range, for a GWB produced in the early universe, will be
redshifted today. We should calculate the characteristic
physical wavenumber of the present GW spectrum, which
is redshifted from any time t during GW production.
This is a key point, since a relatively long period of turbu-
lence will develop after preheating, which could change
the amplitude of the GWB and shift the frequency at
which the spectra peaks. So let us distinguish four char-
acteristic times: the end of inflation, te; the time t∗ when
GW production stops; the time tr when the universe fi-
nally reheats and enters into the radiation era; and today,
t0.

1 Thus, today’s frequency f0 is related to the physi-
cal wavenumber kt at any time t of GW production, via
f0 = (at/a0)(kt/2π), with a0 and at, the scale factor to-
day and at the time t, respectively. Thermal equilibrium
was established at some temperature Tr, at time tr ≥ t.
The Hubble rate at that time was M2

PH
2
r = (8π/3)ρr,

with ρr = grπ
2T 4

r /30 the relativistic energy density and
gr the effective number of relativistic degrees of freedom

1 Note, however, that after thermalization there is still a small
production of GW from the thermal plasma, but this can be
ignored for all practical purposes.

at temperature Tr. Since then, the scale factor has in-
creased as ar/a0 = (g0,s/gr,s)

1/3(T0/Tr), with gi,s the
effective entropic degrees of freedom at time ti, and T0

today’s CMB temperature. Putting all together,

f0 =

(

8π3gr

90

)
1

4
(

g0,s

gr,s

)
1

3 T0
√

HrMp

(

ae

ar

)

k

2π
, (33)

where we have used the fact that the physical wave num-
ber kt at any time t during GW production, is related to
the comoving wavenumber k through kt = (ae/at)k with
the normalization ae ≡ 1.

From now on, we will be concerned with hybrid infla-
tion, leaving chaotic inflation for section VI. Within the
hybrid scenario, we will analyse the dependence of the
shape and amplitude of the produced GWB on the scale
of hybrid inflation, and more specifically on the v.e.v.

of the Higgs field triggering the end of inflation. The
initial conditions are carefully treated following the pre-
scription adopted in paper I, as explained in section IV.
Given the natural frequency at hand in hybrid models,
m =

√
λv, whose inverse m−1 sets the characteristic time

scale during the first stages of reheating, it happens that
as long as v ≪ Mp, the Hubble rate H ∼

√
λ(v2/Mp)

is much smaller than such a frequency, H ≪ m. Indeed,
all the initial vacuum energy ρ0 gets typically converted
into radiation in less than a Hubble time, in just a few
m−1 time steps. Therefore, we should be able to ignore
the dilution due to the expansion of the universe during
the production of GW, at least during the first stages
of reheating. However, as we will see, the turbulent be-
haviour developed after those first stages, could last for
much longer than an e-fold, in which case we will have
to take into account the expansion of the universe. Our
approach will be first to ignore the expansion of the Uni-
verse and later see how we can account for corrections
if needed. Thus, we set the scale factor a = 1 and the
Hubble rate H = 0 and Ḣ = 0. As we will see later, our
approach of neglecting the expansion for the time of GW
production, will be completely justified a posteriori.

The coupled evolution equations that we have to solve
numerically in a lattice for the hybrid model are

üij −∇2uij = 16πGTij (34)

χ̈−∇2χ+
(

g2|φ|2 + µ2
)

χ = 0 (35)

φ̈a −∇2φa +
(

g2χ2 + λ|φ|2 −m2
)

φa = 0 (36)

with Tij given by Eq.(24) with the scale factor a = 1. We
have explicitly checked in our computer simulations that
the backreaction of the gravity waves into the dynamics
of both the inflaton and the Higgs fields is negligible and
can be safely ignored. We thus omit the backreaction
terms in the above equations.

We evaluate during the evolution of the system the
mean field values, as well as the different energy compo-
nents. As shown in Fig. 1, the Higgs field grows towards
the true vacuum and the inflaton moves towards the min-
imum of its potential and oscillates around it. We have
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FIG. 1: Time evolution of the mean field values of the Higgs
and the Inflaton, the former normalized to its v.e.v., the latter
normalized to its critical value χ0 = m/g. This is just a
specific realization with N = 128, pmin = 0.1m, a = 0.48m−1,
v = 10−3Mp and g2 = 2λ = 0.25.

checked that the sum of the averaged gradient, kinetic
and potential energies (contributed by both the inflaton
and the Higgs), remains constant during reheating, as ex-
pected, since the expansion of the universe is irrelevant
in this model. We have also checked that the time evo-
lution of the different energy components is the same for
different lattices, i.e. changing the number of points N
of the lattice, of the minimum momentum pmin = 2π/L
or of the lattice spacing a = L/N , with L the lattice
size, as long as the product ma < 0.5; for a detailed
discussion of lattice scales see paper I. Looking at the
time evolution of the Higgs’ v.e.v. in Fig. 1, three stages
can be distinguished. First, an exponential growth of the
v.e.v. towards the true vacuum. This is driven by the
tachyonic instability of the long-wave modes of the Higgs
field, that makes the spatial distribution of this field to
form lumps and bubble-like structures [28, 29]. Second,
the Higgs field oscillates around the true vacuum, as the
Higgs’ bubbles collide and scatter off eachother. Third,
a period of turbulence is reached, during which the in-
flaton oscillates around its minimum and the Higgs sits
in the true vacuum. For a detailed description of the
dynamics of these fields see Ref. [29]. Here we will be
only concerned with the details of the gravitational wave
production.

The initial energy density at the end of hybrid inflation
is given by ρ0 = m2v2/4, withm2 = λv2, so the fractional
energy density in gravitational waves is

ρ
GW

ρ0
=

4t00
v2m2

=
1

8πGv2m2

〈

ḣij ḣ
ij

〉

V
, (37)

where
〈

ḣij ḣ
ij

〉

V
, defined as a volume average like

1
V

∫

d3xḣij ḣ
ij , is extracted from the simulations as

〈

ḣij ḣ
ij

〉

V
=

=
4π

V

∫

dlogk k3
〈

Λij,lm(k̂)u̇ij(t,k)u̇∗lm(t,k)
〉

4π
(38)
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FIG. 2: The time evolution of the different types of energy (ki-
netic, gradient, potential, anisotropic components and grav-
itational waves for different lattices), normalized to the ini-
tial vacuum energy, after hybrid inflation, for a model with
v = 10−3 MP . One can clearly distinguish here three stages:
tachyonic growth, bubble collisions and turbulence.

where uij(t,k) is the Fourier transform of the solution
of Eq. (34). Then, we can compute the corresponding
density parameter today (with Ωrad h

2 ≃ 3.5 × 10−5)

Ω
GW

h2 =
Ωrad h

2

2Gv2m2 V
×

∫

dlogk k3
〈

Λij,lm(k̂)u̇ij(t,k)u̇∗lm(t,k)
〉

4π
(39)

which has assumed that all the vacuum energy ρ0 gets
converted into radiation, an approximation which is al-
ways valid in generic hybrid inflation models with v ≪
MP , and thus H ≪ m =

√
λ v.

We have shown in Fig. 2 the evolution in time of the
fraction of energy density in GW. The first (tachyonic)
stage is clearly visible, with a (logarithmic) slope twice
that of the anisotropic tensor Πij . Then there is a small
plateau corresponding to the production of GW from
bubble collisions; and finally there is the slow growth
due to turbulence. In the next section we will describe
in detail the most significant features appearing at each
stage.

Note that in the case that H ≪ m, the maximal pro-
duction of GW occurs in less than a Hubble time, soon
after symmetry breaking, while turbulence lasts several
decades in time units of m−1. Therefore, we can safely
ignore the dilution due to the Hubble expansion, up to
times much greater than those of the tachyonic instabil-
ity. Eventually the universe reheats and the energy in
gravitational waves redshifts like radiation thereafter.

To compute the power spectrum per logarithmic fre-
quency interval in GW, Ωgw(f), we just have to use (31).
Moreover, since gravitational waves below Planck scale
remain decoupled from the plasma immediately after pro-
duction, we can evaluate the power spectrum today from
that obtained at reheating by converting the wavenum-
ber k into frequency f . Simply using Eq. (33), with
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FIG. 3: We show here the comparison between the power
spectrum of gravitational waves obtained with increasing lat-
tice resolution, to prove the robustness of our method. The
different realizations are characterized by the the minimum
lattice momentum (pmin) and the lattice spacing (ma). The
growth is shown in steps of m∆t = 1 up to mt = 30, and then
in and m∆t = 5 steps up to mt = 60.

gr,s/g0,s ∼ 100, gr,s ∼ gr and ae ∼ a∗, then

f = 6 × 1010 Hz
k

√

HMp

= 5 × 1010 Hz
k

m
λ1/4 . (40)

We show in Fig. 3 the power spectrum of gravitational
waves as a function of (comoving) wavenumber k/m. We
have used different lattices in order to have lattice ar-
tifacts under control, specially at late times and high
wavenumbers. We made sure by the choice of lattice
size and spacing (i.e. kmin and kmax) that all relevant
scales fitted within the simulation. Note, however, that
the lower bumps are lattice artifacts, due to the physical
cutoff imposed at the initial condition, that rapidly dis-
appear with time. We have also checked that the power
spectrum of the scalar fields follows turbulent scaling af-
ter mt ∼ O(100), and we can thus estimate the subse-
quent evolution of the energy density distributions be-
yond our simulations.

IV. LATTICE SIMULATIONS

The problem of determining the time evolution of a
quantum field theory is an outstandingly difficult prob-
lem. In some cases only a few degrees of freedom are
relevant or else perturbative techniques are applicable.
However, in our particular case, our interests are focused
on processes which are necessarily non-linear and non-
perturbative and involve many degrees of freedom. The
presence of gravitational fields just contributes with more
degrees of freedom, but does not complicate matters sig-
nificantly.

The lattice formulation allows a first principles ap-
proach to non-perturbative quantum field theory. The
existing powerful lattice field theory numerical meth-
ods rest on the path integral formulation in Euclidean

space and the existence of a probability measure in
field space [41]. However, the problem we are inter-
ested in is a dynamical process far from equilibium, and
the corresponding Minkowski path integral formulation
is neither mathematically well founded nor appropriate
for numerical studies. There are a series of alterna-
tive non-perturbative methods which different research
groups have used to obtain physical results in situa-
tions similar to ours. These include Hartree’s approxi-
mations [42] to go beyond perturbation theory or large
N techniques [43, 44]. It is clear that it is desirable to
look at this and similar problems with all available tools.
In the present paper we will use an alternative approx-
imation to deal with the problem: the classical approx-
imation. It consists of replacing the quantum evolution
of the system by its classical evolution, for which there
are feasible numerical methods available. The quantum
nature of the problem remains in the stochastic char-
acter of the initial conditions. This approximation has
been used with great success by several groups in the
past [28, 38]. The advantage of the method is that it is
fully non-linear and non-perturbative, allows the use of
gauge fields [31, 32] and gives access to the quantities we
are interested in.

The validity of the approximation depends on the loss
of quantum coherence in the evolution of the system. In
previous papers we studied this problem both in the ab-
sence of and with gauge fields [29, 31, 32]. We started
the evolution of the system at the critical time tc, corre-
sponding to the end of inflation te, at which the effective
mass of the Higgs vanishes, putting all the modes in its
(free field) ground states. If the couplings are small, since
the quantum fluctuations of the value of the fields are not
too large, the non-linear terms in the Hamiltonian of the
system can be neglected. Then the quantum evolution
is Gaussian and can be studied exactly. The Hamilto-
nian has nonetheless a time-dependence coming through
the time-dependence of the inflaton homogeneous mode.
This time dependence can always be taken to be linear
for a sufficiently short time interval after the critical time.
As a consequence, the dynamics of the eigenmodes dur-
ing this initial phase differs significantly from mode to
mode. Most of them have a characteristic harmonic oscil-
lator behaviour with a frequency depending on the mode
in question. In the case of the Higgs field, the long-wave
modes become tachyonic. By looking at expectation val-
ues of products of these fields at different times, one re-
alises that after a while these modes behave and evolve
like classical modes of an exponentially growing size. The
process is very fast and therefore the remaining harmonic
modes can be considered to have remained in their initial
ground state.

The fast growth in size of the Higgs field expecta-
tion value boosts the importance of non-linear terms and
eventually drives the system into a state where the non-
linear dynamics, including the back-reaction to the in-
flaton field, are crucial. For the whole approximation to
be useful this must happen at a later time than the one
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in which the low-frequency Higgs modes begin evolving
as classical fields. In paper I we showed this to be the
case. Actually, there is a time interval in which classical
behaviour is already dominant while non-linearities are
still small. We tested that our results, in the absence
of gauge fields, were insensitive to the matching time,
provided it lies within this window.

The whole idea can then be summarised as follows:
the tachyonic quantum dynamics of the low momentum
Higgs modes drive them into classical field behaviour and
large occupation numbers before the non-linearities and
back-reaction begin to play a role. It is the subsequent
non-linear classical behaviour of the field that induces
the growth of classical inflaton and gravitational field
components also at low frequencies. It is obvious that
the quantum nature of the problem is still crucial if one
studies the behaviour of high momentum modes which
have low occupation numbers.

In the present paper we apply the same idea in the
presence of (gravitational wave) tensor fields. The initial
quantum evolution of tensor fields is also relatively slow,
since there are no tachyonic modes. Therefore, it is as-
sumed not to affect substantially the initial conditions of
the classical system.

A. Initial conditions

Our approach to the dynamics of the system is to as-
sume that the leading effects under study can be well-
described by the classical evolution of the system. The
justification of this point, as explained in the previous
section, rests upon the fast quantum evolution of the
long wavelength components of the Higgs field during
the initial stages after the critical point. All the other
degrees of freedom will evolve slowly from their initial
quantum vacuum state. For the Higgs field, the lead-
ing behaviour is the exponential growth of those modes
having negative effective mass-squared. The quantum
evolution of such modes drives the system into a quasi-
classical regime. It is essential that this regime is reached
before the non-linearities couple all degrees of freedom to
each other and questions like back-reaction start to affect
the results. It is then assumed that it is the essentially
classical dynamics of that field what matters, and that all
the long-wavelength components of the inflaton and the
gauge fields produced by the interaction with the Higgs
field behave also as classical fields. Of course, this can
hardly be the case for shorter wavelengths which stay in a
quantum state with low occupation numbers. However,
as we can see in Fig. 3, for the range of times studied
in this paper, the effect of shorter wavelengths is rela-
tively small, and the spectrum of modes remains always
dominated by long-wavelengths.

The full non-linear evolution of the system can then
be studied using lattice techniques. Our approach is to
discretize the classical equations of motion of all fields
in both space and time. The time-like lattice spacing at

must be smaller than the spatial one as for the stability of
the discretized equations. In addition to the ultraviolet
cut-off one must introduce an infrared cut-off by putting
the system in a box with periodic boundary conditions.
We have studied 643, 1283 and 2563 lattices. Computer
memory and CPU resources limit us from reaching much
bigger lattices. Nonetheless, in the spirit of paper I, there
are a number of checks one can perform to ensure that our
results are physical and are not biased, within errors, by
the approximations introduced, see Fig. 3. Our problem
has several physical scales which control different time-
regimes and observables. Thus, it is not always an easy
matter to place these scales in the window defined by
our ultraviolet and infrared cut-offs. For example, in
addition to the Higgs and inflaton mass there is a scaleM
associated to the inflaton velocity which is particularly
relevant in determining the bubble sizes and collisions.
Then, when we want to study a stage of the evolution
in particular, we make the selection of the volume and
cutoff most suitable.

Since in this paper we are more interested in under-
standing the phenomenon of GW production, rather than
concentrating in a particular model, our attitude has
been to modify the parameters of the model in order to
sit in a region where our results are insensitive to the cut-
offs. This is no doubt a necessary first step to determine
the requirements and viability of the study of any partic-
ular model. In particular, we have thouroughly studied
a model with g2 = 2λ = 1/4, but we have checked that
other values of the parameters do not change our results
significantly.

The initial conditions of the fields follow the prescrip-
tion from paper I. The Higgs modes φk are solutions of
the coupled evolution equations, which can be rewrit-
ten as φ′′k + (k2 − τ)φk = 0, with τ = M(t − tc) and

M = (2V )1/3m. The time-dependent Higgs mass follows
from the initial inflaton field homogeneous component,
χ0(ti) = χc(1 − V m(ti − tc)) and χ̇0(ti) = −χcVm. The
Higgs modes with k/M >

√
τi are set to zero, while the

rest are determined by a Gaussian random field of zero
mean distributed according to the Rayleigh distribution

P (|φk|)d|φk|dθk = exp

(

−|φk|2
σ2

k

)

d|φk|2
σ2

k

dθk

2π
, (41)

with a uniform random phase θk ∈ [0, 2π] and disper-
sion given by σ2

k ≡ |fk|2 = P (k, τi)/k
3, where P (k, τi)

is the power spectrum of the initial Higgs quantum fluc-
tuations in the background of the homogeneous inflaton,
computed in the linear approximation. In the region of
low momentum modes it is well approximated by

2kPapp(k, τi) = k3
(

1 +A(τi) k
2 e−B(τi) k2

)

, (42)

whereA(τi) andB(τi) are parameters extracted from a fit
of this form to the exact power spectrum given in paper I.
In the classical limit, the conjugate momentum φ̇k(τ)

is uniquely determined through φ̇k(τ) = F (k, τ)φk(τ),
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FIG. 4: The tachyonic growth of the Higgs’ spectrum, from
mt = 5 to mt = 10. We compare simulations of different
sizes (pmin = 0.01 − 0.03) and N = 256, with the anaylitical
expressions.

where F (k, τ) = Im(ifk(τ)ḟ∗
k (τ))/|fk(τ)|2, see paper I.

In the region of low momenta, F (k, τi) can be well aprox-
imated by

F (k, τi) =
2kC(τi)e

−D(τi)k
2

[1 +A(τi)e−B(τi)k2 ]
. (43)

where A(τi) andB(τi) are the previous coefficients for the
amplitude of the field fluctuations, while C(τi) and D(τi)
are new coefficients obtained fitting the exact expression
of F (k, τi).

The rest of the fields (the inflaton non-zero modes and
the gravitational waves), are supposed to start from the
vacuum, and therefore they are semiclassically set to zero
initially in the simulations. Their coupling to the Higgs
modes will drive their evolution, giving rise to a rapid (ex-
ponential) growth of the GW and inflaton modes. Their
subsequent non-linear evolution will be well described by
the lattice simulations.

In the next subsections we will describe the different
evolution stages found in our simulations.

B. Tachyonic growth

In this subsection we will compare the analytical es-
timates with our numerical simulations for the initial
tachyonic growth of the Higgs modes and the subsequent
growth of gravitational waves. The first check is that the
Higgs modes grow according to paper I. There we found
that

k|φk(t)|2 ≃ v2A(τ) e−B(τ)k2

, (44)

with A(τ) and B(τ) are given in paper I,

A(τ) =
π2(1/3)2/3

2Γ2(1/3)
Bi2(τ) , B(τ) = 2(

√
τ −1) , (45)

which are valid for τ > 1, and where Bi(z) is the Airy
function of the second kind. Indeed, we can see in Fig. 4
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FIG. 5: The Fourier transform of the anisotropic stress tensor.
We compare the numerical simulations of Π11(k, t) for pmin =
0.01 with the analytical expressions (dashed lines) for mt =
5−10, i.e. during the tachyonic growth. The small deviations
at k ≤ m are simulation artifacts due to the initial UV cut-off
implementation and soon disappear.

that the initial growth, from mt = 6 to mt = 10, fol-
lows precisely the analytical expression, once taken into
account that in Eq. (44) the wavenumber k and time τ
are given in units of M = (2V )1/3m.

The comparison between the tensor modes hij(k, t)
and the numerical results is somewhat more complicated.
We should first compute the effective anisotropic ten-
sor Tij(k, t) (24) from the gradients of the Higgs field
(those of the inflaton are not relevant during the tachy-
onic growth), as follows,

Π̃ij(k, t) =

∫

d3x e−ikx

(2π)3/2
[∇iφ

a ∇jφ
a(x, t)] , (46)

where

∇iφ
a(x, t) =

∫

d3q

(2π)3/2
iqi φ̃a(q, t) e−iqx . (47)

After performing the integral in x and using the delta
function to eliminate q′, we make a change of variables
q → q+k/2, and integrate over q, with which the Fourier
transform of the anisotropic stress tensor becomes

Π̃ij(k, t) = ki kj
A(τ)

B(τ)
√

2
Ψ

[

1

2
, 0;

B(τ)k2

4

]

e−
1

4
B(τ)k2

,

(48)

which gives a very good approximation to the numerical
results, see Fig. 5, with Ψ(1/2, 0; z) ≃ (π−1+z)−1/2 being
the Kummer function.

Finally, with the use of Π̃ij(k, t), we can compute the
tensor fields,

hij(k, t) = (16πG)

∫ t

0

dt′
sin k(t− t′)

k
Π̃ij (49)

∂0hij(k, t) = (16πG)

∫ t

0

dt′ cos k(t− t′) Π̃ij . (50)
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Using the analytic expression in Eq. (48) one can perform
the integrals and obtain expressions that agree surpris-
ingly well with the numerical estimates. This allows one
to compute the density in gravitational waves, ρ

GW
, at

least during the initial tachyonic stage in terms of ana-
lytical functions, and we reproduce the numerical results,
see Fig. 3.

We will now compare our numerical results with the
analytical estimates. The tachyonic growth is dom-
inated by the faster than exponential growth of the
Higgs modes towards the true vacuum. The (traceless)
anisotropic strees tensor Πij grows rapidly to a value of
order k2|φ|2 ∼ 10−3m2v2, which gives a tensor pertur-
bation

∣

∣hijh
ij

∣

∣

1/2 ∼ 16πGv2(m∆t)210−3 , (51)

and an energy density in GW,

ρ
GW
/ρ0 ∼ 64πGv2 (m∆t)210−6 ∼ Gv2 , (52)

for m∆t ∼ 16. In the case at hand, with v = 10−3MP ,
we find ρ

GW
/ρ0 ∼ 10−6 at symmetry breaking, which

coincides with the numerical simulations at that time,
see Fig. 2.

As shown in Ref. [29], the spinodal instabilities grow
following the statistics of a gaussian random field, and
therefore one can use the formalism of [45] to estimate the
number of peaks or lumps in the Higgs spatial distribu-
tion just before symmetry breaking. As we will discuss in
the next section, these lumps will give rise via non-linear
growth to lump invagination and the formation of bubble-
like structures with large density gradients, expanding at
the speed of light and colliding among themselves giving
rise to a large GWB. The size of the bubbles upon col-
lision is essentially determined by the distance between
peaks at the time of symmetry breaking, but this can be
computed directly from the analysis of gaussian random
fields, as performed in Ref. [29].

This analysis works only for the initial (linear) stage
before symmetry breaking. Nevertheless, we expect the
results to extrapolate to later times since once a bubble is
formed around a peak, it remains there at a fixed distance
from other bubbles. This will give us an idea of the size
of the bubbles at the time of collision.

We estimate the number density of peaks as [45]

npeak(τ) =
2

3
√

3π2
ξ0(τ)

−3(ν2 − 1) exp[−ν2/2] , (53)

where ν = φc/σ(τ) corresponds to the ratio of the field
threshold φc over the dispersion

σ(τ) =

√
λ

π
(2V )1/3

(A(τ)

B(τ)

)1/2

, (54)

with A(τ) and B(τ) given in Eq. (45). The average size
of the gaussian lumps is ξ0(τ) = 2B1/2(τ)m−1, where
time is given in units τ = (2V )1/3mt, see Ref. [29]

The distance between peaks can be estimated as twice
the radius of the average bubble, with volume Vpeak =
4π/3R3

peak. Since the total volume L3 is divided into
Npeak bubbles, we find

dpeak = 2Rpeak =
1

ma

( 6

πnpeak

)1/3

a, (55)

which is typically of order 30 to 40 lattice units, for φc ≃
0.5 − 0.8, V = 0.024 and λ = 0.125, with lattices sizes
given by pmin = 0.15m and N = 128.

What is interesting is that decreasing either λ or V , the
distance between initial lumps increases and thus also the
size of the final bubbles upon collision. As we will show
in the next section, the amplitude of GW depends on the
bubble size squared, and therefore it is expected that for
lower lambda we should have larger GW amplitude. We
have not seen, however, such an increase in amplitude,
but a detailed analysis is underway and will be presented
elsewhere.

C. Bubble collisions

The production of gravitational waves in the next stage
proceeds through ‘bubble’ collisions. In Ref. [28] we
showed explicitly that symmetry breaking is not at all
a homogeneous process. During the breaking of the
symmetry, the Higgs field develops lumps whose peaks
grow up to a maximum value |φ|max/v = 4/3 (see pa-
per I), and then decrease creating approximately spheri-
cally symmetric bubbles, with ridges that remain above
|φ| = v. Finally, neighboring bubbles collide and the
symmetry gets further broken through the generation of
higher momentum modes. Since initially only the Higgs
field sources the anisotropic stress-tensor Πij , then we
expect the formation of structures (see section IV.A) in
the tensor metric perturbation, correlated with the Higgs
lumps. The dependence of the hij tensor on the gradient
of the Higgs field, see Eq.(14), is responsible of the for-
mation of those structures in the energy density spatial
distribution of the GWB.

In section V of this paper we will give account of the
explicit form of the structures developed in the spatial
distribution of ρ

GW
related with the first collisions among

the bubble-like structures of the Higgs field. We will
present simultaneously the evolution of both the Higgs’
spatial distribution when the first bubbles start colliding,
and of the corresponding structures in the GW energy
density ρ

GW
. We leave for a forthcoming publication the

details of an analytical formalism describing the forma-
tion and subsequent evolution of such GW structures.
In this sub-section we will just give an estimate of the
burst in GW produced by the first collisions of the Higgs
bubble-like structures.

Thus, as described in Ref. [12] for the case of first order
phase transitions, which involves the collision of vacuum
bubbles, we can give a simple estimate of the order of
magnitude of the energy fraction radiated in the form
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of gravitational waves when two Higgs bubble-like struc-
tures collide. In general, the problem of two colliding
bubbles has several time and length scales: the duration
of the collision, ∆t; the bubbles’ radius R at the moment
of the collision; and the relative speed of the bubble walls.
In section IV.B we found that the typical size of bubbles
upon collisions, is of the order of R ≈ 10m−1, while the
growth of the bubble’s wall is relativistic. Then we can
assume than the time scale associated with bubble colli-
sions is also ∆t ∼ R. Assuming the bubble walls contain
most of the energy density, and since they travel close to
the speed of light, see paper I, it is expected that the
asymmetric collisions will copiously produce GW.

Far from a source that produces gravitational radia-
tion, the dominat contribution to the amplitude of GW
is given by the acceleration of the quadrupole moment
of the Higgs field distribution. Given the energy den-
sity of the Higgs field, ρH, we can compute the (re-
duced) quadrupole moment of the Higgs field spatial
distribution, Qij =

∫

d3x (xixj − x2δij/3) ρH(x), such
that the amplitude of the gravitational radiation, in the
TT gauge, is given by hij ∼ (2G/r)Q̈ij . A signifi-
cant amount of energy can be emitted in the form of
gravitational radiation whenever the quadrupole moment
changes significantly fast: through the bubble collisions
in this case. The power carried by these waves can be
obtained via (29) as

P
GW

=
G

8π

∫

dΩ
〈...
Qij

...
Q

ij
〉

. (56)

Omitting indices for simplicity, as the power emitted in
gravitational waves in the quadrupole approximation is
of order P

GW
∼ G(

...
Q)2, while the quadrupole moment is

of order Q ∼ R5ρH, we can estimate the power emitted
in GW upon the collision of two Higgs bubbles as

P
GW

∼ G

(

R5ρ

R3

)2

∼ Gρ2
H R

4 (57)

The fraction of energy density carried by these waves,
ρ

GW
∼ P

GW
∆t/R3 ∼ P

GW
/R2 ∼ Gρ2

HR
2, compared

to that of the initial energy stored in the two bubble-like
structures of the Higgs field, will be ρ

GW
/ρH = GρHR

2.
Since the expansion of the universe is negligible during
the bubble collision stage, the energy that drives infla-
ton, ρ0 ∼ m2v2, is transferred essentially to the Higgs
modes during preheating, within an order of magnitude,
see Fig. 2. Thus, recalling that R ∼ 10m−1, the total
fraction of energy in GW produced during the bubble
collisions to that stored in the Higgs lumps formed at
symmetry breaking, is given by

ρ
GW

ρ0
∼ 0.1Gρ0R

2 ∼ (v/Mp)
2 , (58)

giving an amplitude which is of the same order as is ob-
served in the numerical simulations, see Fig. 2. Of course,
an exhaustive analytical treatment of the production of
GW during this stage of bubble collisions remains to be
done, but we leave it for a future publication.

FIG. 6: Variance of the Inflaton and the Higgs field as a
function of time, the former normalized to its critical value,
the latter normalized to its v.e.v.. As expected in a turbulent
regime, these variances follow a power law ∼ t−2p with p a
certain critical exponent, although the slope of the Inflaton’s
variances evolves in time. The curves are produced from an
average over 10 different statistical realizations.

D. Turbulence

The development of a turbulent stage is expected from
the point of view of classical fields, as turbulence usu-
ally appears whenever there exists an active (stationary)
source of energy localized at some scale kin in Fourier
space. As first pointed out by Ref. [46], in reheating sce-
narios the coherently oscillating inflaton zero-mode plays
the role of the pumping-energy source, acting at a well
defined scale kin in Fourier space, given by the frequency
of the inflaton oscillations. Thus, the inflaton zero-mode
pumps energy into the rest of the fields that couple to it
as well as into the non-zero modes of the inflaton field
itself. Apart from kin, there is no other scale in Fourier
space where energy is accummulated, dissipated and/or
infused. So, as turbulence is characterized by the trans-
port of some conserved quantity, energy in our case, we
should expect a flow of energy from kin towards higher
(direct cascade) or smaller (inverse cascade) momentum
modes. In typical turbulent regimes of classical fluids,
there exits a sink in Fourier space, corresponding to that
scale at which the (direct) cascade stops and energy gets
dissipated. However, in our problem there is no such sink
so that the transported energy cannot be dissipated, but
instead it is used to populate high-momentum modes.
For the problem at hand, there exists a natural initial
cut-off kout ∼ λ1/2v, such that only long wave modes
within k < kout, develop the spinodal instability. Even-
tually, after the tachyonic growth has ended and the first
Higgs’ bubble-like structures have collided, the turbulent
regime is established. Then the energy flows from small
to greater scales in Fourier space, which translates into
the increase of kout in time.

In Ref. [32] we already accounted for the turbulent
stage reached in a hybrid model with gauge fields. How-
ever, we don’t consider gauge fields here, so the number
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them by k4 so we can see better the scaling behaviour. In
the upper right corner, we plot the inverse relation of (60),
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each time. The scaling behaviour predicted by wave kinetic
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FIG. 8: Different times of the evolution of the particle occu-
pation numbers spectra of the Inflaton, multiplied by k4, and
averaged over 10 statistical realizations or each time. Again,
in the upper right corner, we plot the inverse relation of (60),
n0(k) = tγpn(ktp, t), also averaged over 10 realizations for
each time.

of degrees of freedom is different from that of Ref. [32]
and, therefore, the turbulent dynamics of the Inflaton
and the Higgs fields should be different. In particular,
when the turbulence has been fully established, if the
wave (kinetic) turbulence regime of the fields’ dynamics
is valid, the time evolution of the variance of a turbulent
field f(x, t), should follow a power-law-like scaling [46]

Var(f(t)) =
〈

f(t)2
〉

− 〈f(t)〉2 ∝ t−2p , (59)

with p = 1/(2N−1) andN the number of scattering fields
in a ‘point-like collision’. In fact, such time behaviour
corresponds only to the case of the so called free turbu-

lence, when the energy stored in the pumping source is
subdominant to the energy in the turbulent fields. In our
case, this condition is reached very soon after the sym-
metry breaking, so we don’t expect a significant stage

of driven turbulence, which would make the variance to
increase (Only the inflaton seems to increase its variance
between mt = 10 and mt = 30, but it is not very pro-
nounced). In Fig. 6 we have plotted the time evolution
of the variances of the Inflaton χ and of the Higgs mod-
ulus φ =

√
∑

a φ
2
a, and fitted the data with a power-law

like (59), obtaining

Inflaton: p−1
I

= 5.1 ± 0.2, [35:85]

Inflaton: p−1
I

= 9.03 ± 0.03, [350:2000]

Higgs: p−1
H

= 7.02 ± 0.01, [50:2000]

where the last brackets on the right correspond to the
range in time (in units of m−1) for which we fitted the
data. As can be seen in Fig. 6, the slope of the Higgs
field (in logarithmic scale), 2p

H
∼ 2/7, remains approxi-

mately constant in time, corresponding to a 4-field dom-
inant interaction. However, the slope of the Inflaton’s
variance increases in time, i.e. the critical exponent p

I
of

the Inflaton decreases, until it reaches a stationary stage
atmt ∼ 100. Since p

I
is related to the number N of fields

interacting in a collision, if there was a change from one
dominant multi-field interaction to another, this should
produce a time-dependent effective p

I
, as seen in Fig. 6.

However, we will not try to explain here the origin of
such an effective critical exponents as extracted from the
simulations. We will just stress that we have checked
the robustness of those values under different lattice con-
figurations (N, pmin) and different statistical realizations,
discarding this way a possible lattice artefact effect. As
we will see, the critical exponents p determines the speed
with which the turbulent particle distribution moves over
momentum space, so this is a crucial parameter. More-
over, although both the classical modes of the Inflaton
and the Higgs contribute to the production of GW, the
Inflaton’s occupation numbers decrease faster than those
of the Higgs so, after a given time, only the Higgs’ modes
remain as the main source of GW.

Actually, when turbulence is developed, it is expected
that the distribution function of the classical turbulent
fields, the inflaton and the Higgs here, follow a self-similar
evolution [46]

n(k, t) = t−γ pn0(k t
−p) (60)

with p the critical exponent of the fields’ variances and
γ a certain factor ∼ O(1), which depends on the type of
turbulence developed. It is precisely this way that the
exponent p determines the speed of the particles’ distri-
bution in momentum space: given a specific scale kc such
that, for example, the occupation number has a maxi-
mum, that scale evolves in time as kc(t) = kc(t0)(t/t0)

p.
We have seen that the evolution of the Higgs occupation
number follows Eq. (60) with p ≈ 1/7, as expected from
the Higgs variance, and γ ≈ 2.7. Whereas the evolution
of the Inflaton occupation number follows (60) even more
accurately than the Higgs, with an “effective” exponent
p ≈ 1/5, and γ ≈ 3.9. Since the slope of the inflaton’s
variance changes in time, the value of the exponents of
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FIG. 9: Time evolution of the GW spectra from mt = 6 to
mt = 2000. The amplitude of the spectra seems to saturate
after mt ∼ 100, although the high momentum tail still moves
slowly to higher values of k during the turbulent stage.

the inflaton’s scaling relation will require further investi-
gation. However, despite this time evolution of the Infla-
ton variance, Eq. (60) is very well fulfilled by the Inflaton
with the given effective exponents. So we can perfectly
obtain the universal n0(k) function for the Inflaton as
well as for the Higgs.

In Figs. 7 and 8 we have plotted the occupation num-
bers of the Higgs and the Inflaton, also inverting the re-
lation of Eq. (60) in order to extract the universal time-
independent n0(k) functions of each field. As shown in
those figures, the distributions follow the expected scal-
ing behaviour. However, for the range of interest of k,
there are small discrepancies of order 0.1-4% (depending

on k) among the different universal functions n
(i)
0 (k), as

obtained inverting Eq. (60) at different times mti. The
universal functions n0(k) plotted in Figs. 7 and 8 have
been obtained from averaging over ten statistical realiza-
tions for each time.

The advantage of the development of a turbulence be-
haviour is obvious: it allows us to extrapolate the time
evolution of the fields’ distributions till later times be-
yond the one we can reach with the simulations. More-
over, the fact that the turbulence develops so early after
the tachyonic instability, also allow us to check for a long
time of the simulation, the goodness of the description
of the dynamics of the fields, given by the turbulent ki-
netic theory developed in Ref. [46]. We have fitted the
averaged universal functions n0(k) with expressions of
the form k4 n0(k) = P (k)e−Q(k), with P (k) and Q(k)
polynomials in k, giving:

Inflaton : P (k) = 486.2k3 Q(k) = 6.39k

Higgs : P (k) = 2.96k3 Q(k) = 2.26k2 − 3.18k
(61)

There is no fundamental meaning for these expressions,
but it is very useful to have such an analytical control
over n0(k), since this allows us to track the time-evolution

of n(k, t) through Eq. (60). Actually, the classical regime
of the evolution of some bosonic fields ends when the
system can be relaxed to the Bose-Einstein distribution.
We are now going to estimate the moment in which the
initial energy density gets fully transferred to the Higgs
classical modes. Using Eq.(60) and the fit (61), we find
that the initial energy density is totally transfered to the
Higgs when (in units m = 1)

ρ0 =
1

4λ
=

∫

dk

k

k3

2π2
k n(k, t) =

7.565

2π2
t(4−γ)p , (62)

where we have assumed that the Higgs’ modes have en-
ergy Ek(k, t) = k n(k, t). In our case, with λ = 1/8,
the conversion of the initial energy density into Higgs
particles and therefore into radiation is complete by
mt ∼ 6 × 104. Therefore, if we consider this value as
a lower bound for the time that classical turbulence re-
quires to end, we see that turbulence last for a very
long time compared to the time-scale of the initial tachy-
onic and bubbly stages. Thus, if GW were significatively
sourced during turbulence, one should take into account
corrections from the expansion of the universe.

In Fig. 9, we show the evolution of the GW spectra up
to times mt = 2000, for a lattice of (N,pmin) = (128,.15).
It is clear from that figure that the amplitude of the GW
saturates to a value of order ρgw/ρ0 ≈ 2 · 10−6. At mt
≈ 50, the maximum amplitude of the spectra has al-
ready reached ρgw/ρ0 ≈ 10−6, while at time mt ≈ 100,
the maximum has only grown a factor of 2 with respect
to mt ≈ 50. From times mt ≈ 150 till the maximum
time we reached in the simulations, mt = 2000, the max-
imum of the amplitude of the spectrum does not seem to
change significantly, slowly increasing from ≈ 2 · 10−6 to
≈ 2.5 · 10−6. Despite this saturation, we see in the simu-
lations that the the long momentum tail of the spectrum
keeps moving towards greater values. This displacement
is precisely what one would expect from turbulence, al-
though it is clear that the amplitude of the new high mo-
mentum modes never exceed that of lower momentum.
In order to disscard that this displacement towards the
UV is not a numerical artefact, one should further inves-
tigate the role played by the turbulent scalar fields as a
source of GW. Here, we just want to remark that the tur-
bulent motions of the scalar fields, seem not to increase
significatively anymore the total amplitude of the GW
spectrum. Indeed, in a recent paper [25] where GW pro-
duction at reheating is also considered, it is stated that
GW production from turbulent motion of classical scalar
fields, should be very supressed. That is apparently what
we observe in our simulations although, as pointed above,
this issue should be investigated in a more detailed way.
Anyway, here we can conclude that the expansion of the
Universe during reheating in these hybrid models, does
not play an important role during the time of GW pro-
duction, and therefore we can be safely ignore it.
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FIG. 10: Model: λ = 10−3, g2 = 1. In the left picture we show a spatial section of 〈φ〉. We can see how a spherical lump is
growhing. In the right picture we can see the structure of the ρGW in the same place. A ring is forming around the Higgs lump.
More complex structures are formed in the regions in which the Higgs bubbles are next, and the GW grow in the boundary of
this lumps, where the gradient of the Higgs and therefore the Πij tensor grow in this region.

V. SPATIAL SECTIONS AND LOCAL GW

PRODUCTION

In this section, we show a sequence of snapshots (mt =
5−20) of the evolution of the spatial distribution, before
the fields are driven to the turbulent stage. We find that
the first stages of the GW dynamics is strongly correlated
with the dynamics of the Higgs oscillations that give rise
to symmetry breaking. A qualitative way of understand-
ing this question is to analyse the spatial structure of
the Πij tensor, built from spatial gradients of the Higgs
and inflaton fields. Since the oscillations of 〈φ〉 are due to
rapid changes of the Higgs’ values in its way of symmetry
breaking, this induces great variations in the behaviour
of the spatial gradients. We are now going to analyse
briefly the different stages showing the most representa-
tives images. Shortly, it will be available in our web page,
a bigger selection of pictures and movies [47].

An interesting conclusion from the set of Figs. 10 − 14
is that the Higgs evolution from lump growth, through
invagination to bubble collisions, has a direct transla-
tion into the corresponding growth of gravitational wave
energy density. Not only does the volume-averaged am-
plitude ρGW follow the Higgs time evolution, but the in-
dividual local features in the GWB seem to correspond
very closely with the Higgs features.

In the first stage both Higgs and GW backgrounds
grow very fast. The lumps which grow in the Higgs back-
ground induce structures around these, through the gra-
dients appearing in the Πij tensor. The geometry of the
gravitational structures comes from the position of the
Higgs lump. A typical structure for an isolated lump is

a ring of gravitational waves, see Fig. 10. More complex
structures can be formed around the position of the Higgs
lumps. Before symmetry breaking these lumps grow ac-
cording to the previous analysis, generating domains with
a great density of gravitational energy.

The second stage begins when 〈φ〉 = v and the sym-
metry breaking starts, then the Higgs lumps invaginate
and expand, producing the growth of gravitational waves
around of these structures, see Figs. 11 and 12, one can
see that whenever the bubble walls expand, the variation
in the gradient of the Higgs’ field induces the expansion
of the GW ring. In the case of the rings, if the lump
is very isolated, the expansion induces the ring to dilute
and disappear, by Gauss law. In practice, however, the
lumps are never isolated and bubbles collide before the
gradients (and thus the GW) die away.

In the case when two Higgs’ bubble-like structures are
close by, the expansion of their walls compresses the GW
structures. This expansion continues until the first Higgs
oscillation, see Fig. 3. If the distance between Higgs’
structures is small, then the GW can be diluted, whereas
in the other case, a remnant string-like GW structure sur-
vives, and when the Higgs background goes to zero this
GW structure becomes divided into two waves that prop-
agate in opposite directions, as one can see in Figs. 13
and 14, which show four snapshots of this process. A
similar behaviour is observed in the second oscillations.

Finally, the wave fronts propagate, colliding among
themselves, driving the system to the stage of turbulence.
We will leave for a future publication the detailed anal-
ysis of the GW production at the bubble collisions and
the subsequent turbulent period.
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FIG. 11: Here we have got the time evolution of the previous
ring (picture 10) near the symmetry breaking. The bubble is
growing (mt = 10-11), until the symmetry breaking time (mt
= 12).

VI. GRAVITATIONAL WAVES FROM

CHAOTIC INFLATION

The production of a relic GWB at reheating was
first addressed by Khlebnikov and Tkachev (KT) in
Ref. [21], both for the quadratic and quartic chaotic in-
flation scenarios. In these models, the long-wavelength
part of the spectrum is dominated by the gravitational
bremsstrahlung associated with the scattering of the ex-
tra scalar particles off the inflaton condensate, ‘evaporat-
ing’ this way the inflaton particles. Using this fact, KT
estimated analytically the amplitude of the power spec-
tra of GW for the low frequency end of the spectrum,
corresponding to wavelengths of order the size of the hori-
zon at rescattering. Moreover, KT also studied the GW
power spectra numerically, although just for the massless
inflaton case. Recently, chaotic scenarios were revisited
in Ref. [23, 24], accompanied by more precise numerical
simulations at different energy scales, including the case
of a massive inflaton. Finally, also very recently, Ref. [25]
studied in a very detailed way, both analitical and numer-
ically, the evolution of GW produced at preheating in the
case of a massless inflaton with an extra scalar field.

In Refs. [21] and [23], the procedure to compute the
GW from reheating relied on Weinberg’s formula for the
energy carried by a weak gravitational radiative field in
flat space-time [48]. However, in chaotic models, the

FIG. 12: The Higgs lump begins to invaginate, and the GW
ring expands (mt = 12-13). A similar behavior is observed
in a smaller lump below the biggest Higgs lump, in the same
pictures.

expansion of the universe can not be neglected during
reheating, so Weinberg’s formula can only be used in
an approximated way, if the evolution of the universe
is considered as an adiabatic sequence of stationary uni-
verses. Rescaling fields by a conformal transformation,
their evolution equations can be solved with a numerical
integrator, while the evolution of the scale factor can be
calculated analytically. Discretizing the time, the phys-
ical variables can be recovered from the conformal ones
in each time step, thus allowing to compute the energy
of gravitational waves in terms of the physical fields. In
this paper, however, we adopt another approach2 that
takes into account expansion of the universe in a self-
consistent manner, and let us calculate at any time the
energy density and power spectra of the GW produced
at reheating. As explained in section III and applied to
the case of hybrid inflation in sections IV and V, we just
solve numerically Eq. (23), together with those eqs. of
the other Bose fields and the scale factor, Eqs. (9),(10)
and Eqs.(12),(13). Then, using the projector (21) into

2 Note that Refs. [24] and [25] also work in the same theoretical
framework, considering the TT tensor perturbations on top of
a flat FRW space. However, we use a different way to extract
numerically the GW power spectra, relying on the conmutating

procedure, as detailed explained in subsection III.B
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FIG. 13: After symmetry breaking the expansion of Higgs
lump compresses the GW, until the Higgs gradient changes
in the first oscillation (mt =13-13.5).

the (Fourier transformed) solution of Eq.(23), we recover
the TT d.o.f corresponding to GW. This way, we can
monitor the total energy density in GW using Eq. (29),
or track the evolution of the power spectrum. Using this
technique, we will show in this section that we repro-
duce, for specific chaotic models, similar results to those
of other authors.

We adapted the publicly available LATTICEEASY
code [35], taking advantage of the structure of the code
itself, incorparating the evolution of Eq. (14), together
with the equations of the scalar fields, Eqs. (9) and (10),
into the staggered leapfrog integrator routine. This way,
we can solve at the same time the dynamics of the scalar
and tensor fields, within the framework of an expanding
FRW universe Eqs.(12) and (13).

In particular, we will concentrate only in an scenario
with a massless inflaton χ, either accompanied or not by
an extra scalar field φ. In the following, we will describe
the numerical results for GW production at reheating in
such scenarios, described by the potential

V (χ, φ) =
λ

4
χ4 +

1

2
g2χ2φ2 (63)

Rescaling the time by

dτ =
a(τ)

a(0)
χ(0)

√
λdt , (64)

FIG. 14: At this moment, when the Higgs falls, the GW
strutrure is divided in two waves (mt = 14). These wave
fronts propagates in opposite directions (mt = 14.5).

and the physical fields by a conformal transformation as

χc(τ) =
a(τ)

a(0)

χ(τ)

χ(0)
, (65)

φc(τ) =
a(τ)

a(0)

φ(τ)

χ(0)
(66)

then the equations of motion of the inflaton and of the
extra scalar field, Eqs. (9) and (10), can be rewritten in
terms of the conformal variables as

χ′′
c −∇2χc −

a′′

a
χc + (χ2

c + qφ2
c)χc = 0 (67)

φ′′c −∇2φc −
a′′

a
χc + qχ2

cφc = 0 , (68)

where the prime denotes derivative with respect to con-
formal time. Since the universe expands as radiation-like
in these scenarios, a(τ) ∼ τ , so the terms proportional
to a′′/a in Eqs. (67) and (68) are soon zero, as explicitly
checked in the simulations. Thanks to this, the model is
conformal to Minkowski.

The parameter q ≡ g2/λ controls the strength and
width of the resonance. For the case of a massless in-
flaton without an extra scalar field, we just set q = 0
in Eq. (67) and ignore Eq. (68). However, in that case,
fluctuations of the inflaton also grow via parametric res-
onance. Actually, they grow as if they were fluctuations
of a scalar field coupled to the zero-mode of the inflaton
with effective couplig q = g2/λ = 3, see Ref. [49].
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FIG. 15: The spectrum of the gravitational waves’ energy den-
sity, for coupled case with λ = 10−14 and g2/λ = 120. The
spectrum is shown accumulated up to different times during
GW production, so one can see its evolution. At each time,
it is normalized to the total instant density. This plot corre-
sponds to a N = 128 lattice simulation, from τ = 0 to τ = 240.

Following Refs. [21] and [23], we set λ = 10−14 and
q = 120. Since, this case is also computed in [25], we
can also compare our results with theirs. Moreover, we
also present results for the pure λχ4 model with no extra
scalar field, a case only shown in Ref. [21].

We begin our simulations at the end of inflation, when
the homogeneous inflaton verifies χ0 ≈ 0.342Mp and
χ̇0 ≈ 0. We took initial quantum (conformal) fluctua-

tions 1/
√

2k for all the modes up to a certain cut-off,
and only added an initial zero-mode for the inflaton,
χc(0) = 1, χc(0)′ = 0. In Figs. 15 and 16, we show
the evolution of Ω

GW
during reheating, normalized to

the instant density at each time step, for the coupled
and the pure case, respectively. In the case with an extra
scalar field, the amplitude of the GWB saturates at the
end of parametric resonance, when the fields variances
have been stabilized. This is the beginnig of the turbu-
lent stage in the scalar fields, which seems not to source
anymore the production of GWs, as already stated in
Refs.[23, 25]. For the pure case, we also see the saturation
of the amplitude of the spectra, see Fig. 16, although the
long momenta tail seems to slightly move toward higher
values.

Of course, in either case, with and without an extra
field φ, in order to predict today’s spectral window of the
GW spectrum, we have, first, to normalize their energy
density at the end of GW production to the total energy
density at that moment. Secondly, we have to redshift
the GW spectra from that moment of reheating, taking
into account that the rate of expansion have changed
significantly since the end of inflation, see Eq.(33). In
particular, the shape and amplitude of GW spectra for
the case with the extra scalar field coupled to the infla-
ton with q = 120, see Fig. 17, seems to coincide with the
espectra shown in Ref. [25]. On the other hand, we also
reproduce in Fig. 17 a similar spectra to the one shown
in [21], for the case of the pure quartic model. Thanks

 1e-20

 1e-15

 1e-10

 1e-05

 1  10k / χoλ1/2

ΩGW(k)

FIG. 16: The spectrum of the gravitational waves’ energy
density, for the pure case, with λ = 10−14. Again, we show
the spectrum accumulated up to different times during GW
production, normalized to the total instant density at each
time. The plot corresponds to a N = 128 lattice simulation,
from τ = 0 to τ = 2000.
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f (Hz)

Coupled
Pure

FIG. 17: Today’s ratio of gravitational waves normalized to
radiation energy density, for both the coupled and the pure
case. We took g∗/g0 = 100 to redshift the spectra from the
time of the end of production till today.

to the tremendous gain in computer power, we were able
to resolve the ’spiky’ pattern of the spectrum with great
resolution. For the first time, it is clearly observed the
exponential tail for large frequencies, see Figs. 16, 17,
not shown in Ref. [21]. The most remarkable fact, is
that we also confirm that the peak structure in the GW
power spectrum, see Fig. 16, remains clearly visible at
times much later than the one at which those peaks have
dissapeared in the scalar fields’ power spectrum. So, as
pointed out in Ref. [21], this characteristic feature distin-
guish this particular model from any other.

Let us emphasize that we have run the simulations
till times much greater than that of the end of the res-
onance stage, both for the pure and the coupled case.
The role of the turbulence period after preheating seems,
therefore, not to be very important, despite its long du-
ration. Apparently, the no-go theorem about the suppre-
sion of GW at turbulence, discussed in [25], is fulfilled.
In Refs. [31, 51] it was pointed out that gauge couplings
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or trilinear interactions could be responsible for a fast
thermalization of the universe after inflation (see also
Ref. [52]), but as long as this takes place after the end of

the resonace stage, in principle this should not affect the
results shown above.

 1e-20

 1e-15

 1e-10

 1e-5

 1

 1e-10  1e-5  1  1e+5  1e+10

Ω gw
(f)

 h
2

f(Hz)

LISA

LIGO III

BBO

BBN bound

ms pulsar λ φ4

GUT inflation

(CMB bound)

Hybrid

Hybrid

?

WDB

FIG. 18: The sensitivity of the different gravitational wave experiments, present and future, compared with the possible
stochastic backgrounds; we include the White Dwarf Binaries (WDB) [50] and chaotic preheating (λφ4, coupled and pure) for
comparison. Note the two well differentiated backgrounds from high-scale and low-scale hybrid inflation. The bound marked
(?) is estimated from ultra high frequency laser interferometers’ expectations [15].

VII. CONCLUSIONS

To summarize, we have shown that hybrid models
are very efficient generators of gravitational waves at
preheating, in three well defined stages, first via the
tachyonic growth of Higgs modes, whose gradients act
as sources of gravity waves; then via the collisions
of highly relativistic bubble-like structures with large
amounts of energy density, and finally via the turbulent
regime (although this effect does not seem to be very
significant in the presence of scalar sources), which
drives the system towards thermalization. These waves
remain decoupled since the moment of their production,
and thus the predicted amplitude and shape of the
gravitational wave spectrum today can be used as a
probe of the reheating period in the very early universe.
The characteristic spectrum can be used to distinguish
between this stochastic background and others, like
those arising from NS-NS and BH-BH coalescence,
which are decreasing with frequency, or those arising
from inflation, that are flat [53].

We have plotted in Fig. 18 the sensitivity of planned
GW interferometers like LIGO, LISA and BBO, together
with the present bounds from CMB anisotropies (GUT
inflation), from Big Bang Nucleosynthesis (BBN) and
from milisecond pulsars (ms pulsar). Also shown are
the expected stochastic backgrounds of chaotic inflation
models like λφ4, both coupled and pure, as well as the
predicted background from two different hybrid infla-
tion models, a high-scale model, with v = 10−3MP and
λ ∼ g2 ∼ 0.1, and a low-scale model, with v = 10−5MP

and λ ∼ g2 ∼ 10−14, corresponding to a rate of expansion
H ∼ 100 GeV. The high-scale hybrid model produces
typically as much gravitational waves from preheating
as the chaotic inflation models. The advantage of low-
scale hybrid models of inflation is that the background
produced is within reach of future GW detectors like
BBO [6]. It is speculated that future high frequency laser
interferometers could be sensitive to a GWB in the MHz
region [15], although they are still far from the bound
marked with an interrogation sign.
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For a high-scale model of inflation, we may never see
the predicted GW background coming from preheating,
in spite of its large amplitude, because it appears at very
high frequencies, where no detector has yet shown to
be sufficiently sensitive. On the other hand, if inflation
occured at low scales, even though we will never have a
chance to detect the GW produced during inflation in
the polarization anisotropies of the CMB, we do expect
gravitational waves from preheating to contribute with
an important background in sensitive detectors like
BBO. The detection and characterization of such a GW
background, coming from the complicated and mostly
unknown epoch of rehating of the universe, may open a
new window into the very early universe, while providing
a new test on inflationary cosmology.
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