936 research outputs found

    Attention Allocation Aid for Visual Search

    Full text link
    This paper outlines the development and testing of a novel, feedback-enabled attention allocation aid (AAAD), which uses real-time physiological data to improve human performance in a realistic sequential visual search task. Indeed, by optimizing over search duration, the aid improves efficiency, while preserving decision accuracy, as the operator identifies and classifies targets within simulated aerial imagery. Specifically, using experimental eye-tracking data and measurements about target detectability across the human visual field, we develop functional models of detection accuracy as a function of search time, number of eye movements, scan path, and image clutter. These models are then used by the AAAD in conjunction with real time eye position data to make probabilistic estimations of attained search accuracy and to recommend that the observer either move on to the next image or continue exploring the present image. An experimental evaluation in a scenario motivated from human supervisory control in surveillance missions confirms the benefits of the AAAD.Comment: To be presented at the ACM CHI conference in Denver, Colorado in May 201

    ipso-Substitution – A Novel Pathway for Microbial Metabolism of Endocrine-Disrupting 4-Nonylphenols, 4-Alkoxyphenols, and Bisphenol A

    Get PDF
    Our studies with Sphingobium xenophagum Bayram show that this bacterial strain degrades ?-quaternary 4-nonylphenols by an ipso-substitution mechanism, whereby the nonylphenol substrates are initially hydroxylated at the ipso position to form 4-hydroxy-4-nonylcyclohexa-2,5-dienones (quinols). Subsequently, the ?-quaternary side chains are able to detach as short-living cations from these intermediates. Alkyl branches attached to the carbocation help to delocalize and thereby stabilize the positive charge through inductive and hyperconjugative effects, which explains why only alkyl moieties of ?-quaternary nonylphenols are released. This view is corroborated by experiments with S. xenophagum Bayram, in which the alkyl chains of the non-?-quaternary 4-(1-methyloctyl) phenol (4-NP2) and 4-n-nonylphenol (4-NP1) were not released, so that the bacterium was unable to utilize these isomers as growth substrates. Analysis of dead end metabolites and experiments with 18O labeled H2O and O2 clearly show that in the main degradation pathway the nonyl cation derived from ?-quaternary quinols preferentially combines with a molecule of water to yield the corresponding alcohol and hydroquinone. However, the incorporation of significant amounts of O2-derived oxygen into the nonanol metabolites derived from degradation of certain ?,?-dimethyl substituted nonylphenols by strain Bayram strongly indicates the existence of a minor pathway in which the cation undergoes an alternative reaction and attacks the ipso-hydroxy group, yielding a 4-alkoxyphenol as an intermediate. Additional growth experiments with strain Bayram revealed that also the two alkoxyphenols 4-tert-butoxyphenol and 4-n-octyloxyphenol promote growth. Furthermore, strain Bayram's ipso-hydroxlating activity is able to transform also bisphenol A

    Patient-specific fetal radiation dosimetry for pregnant patients undergoing abdominal and pelvic CT imaging

    Get PDF
    Background: Accurate estimation of fetal radiation dose is crucial for risk-benefit analysis of radiological imaging, while the radiation dosimetry studies based on individual pregnant patient are highly desired. Purpose: To use Monte Carlo calculations for estimation of fetal radiation dose from abdominal and pelvic computed tomography (CT) examinations for a population of patients with a range of variations in patients’ anatomy, abdominal circumference, gestational age (GA), fetal depth (FD), and fetal development. Methods: Forty-four patient-specific pregnant female models were constructed based on CT imaging data of pregnant patients, with gestational ages ranging from 8 to 35 weeks. The simulation of abdominal and pelvic helical CT examinations was performed on three validated commercial scanner systems to calculate organ-level fetal radiation dose. Results: The absorbed radiation dose to the fetus ranged between 0.97 and 2.24 mGy, with an average of 1.63 ± 0.33 mGy. The CTDIvol-normalized fetal dose ranged between 0.56 and 1.30, with an average of 0.94 ± 0.25. The normalized fetal organ dose showed significant correlations with gestational age, maternal abdominal circumference (MAC), and fetal depth. The use of ATCM technique increased the fetal radiation dose in some patients. Conclusion: A technique enabling the calculation of organ-level radiation dose to the fetus was developed from models of actual anatomy representing a range of gestational age, maternal size, and fetal position. The developed maternal and fetal models provide a basis for reliable and accurate radiation dose estimation to fetal organs.</p

    Automatic Diagnosis for Prostate Cancer Using Run-Length Matrix Method

    Get PDF
    Prostate cancer is the most common type of cancer and the second leading cause of cancer death among men in US1. Quantitative assessment of prostate histology provides potential automatic classification of prostate lesions and prediction of response to therapy. Traditionally, prostate cancer diagnosis is made by the analysis of prostate-specific antigen (PSA) levels and histopathological images of biopsy samples under microscopes. In this application, we utilize a texture analysis method based on the run-length matrix for identifying tissue abnormalities in prostate histology. A tissue sample was collected from a radical prostatectomy, H&E fixed, and assessed by a pathologist as normal tissue or prostatic carcinoma (PCa). The sample was then subsequently digitized at 50X magnification. We divided the digitized image into sub-regions of 20 X 20 pixels and classified each sub-region as normal or PCa by a texture analysis method. In the texture analysis, we computed texture features for each of the sub-regions based on the Gray-level Run-length Matrix(GL-RLM). Those features include LGRE, HGRE and RPC from the run-length matrix, mean and standard deviation of the pixel intensity. We utilized a feature selection algorithm to select a set of effective features and used a multi-layer perceptron (MLP) classifier to distinguish normal from PCa. In total, the whole histological image was divided into 42 PCa and 6280 normal regions. Three-fold cross validation results show that the proposed method achieves an average classification accuracy of 89.5% with a sensitivity and specificity of 90.48% and 89.49%, respectively

    Lameness affects cow feeding but not rumination behaviour as characterised from sensor data

    Get PDF
    Using automatic sensor data, this is the first study to characterize individual cow feeding and rumination behavior simultaneously as affected by lameness. A group of mixedparity, lactating Holstein cows were loose-housed with free access to 24 cubicles and 12 automatic feed stations. Cows were milked three times/day. Fresh feed was delivered once daily. During 24 days with effectively 22 days of data, 13,908 feed station visits and 7,697 rumination events obtained from neck-mounted accelerometers on 16 cows were analyzed. During the same period, cows were locomotion scored on four occasions and categorized as lame (n = 9) or not lame (n = 7) throughout the study. Rumination time, number of rumination events, feeding time, feeding frequency, feeding rate, feed intake, and milk yield were calculated per day, and coefficients of variation were used to estimate variation between and within cows. Based on daily sums, using each characteristic as response, the effects of lameness and stage of lactation were tested in a mixed model. With rumination time as response, each of the four feeding characteristics, milk yield, and lameness were tested in a second mixed model. On a visit basis, effects of feeding duration, lameness, and milk yield on feed intake were tested in a third mixed model. Overall, intra-individual variation was <15% and inter-individual variation was up to 50%. Lameness introduced more inter-individual variation in feeding characteristics (26–50%) compared to non-lame cows (17–29%). Lameness decreased daily feeding time and daily feeding frequency, but increased daily feeding rate. Interestingly, lameness did not affect daily rumination behaviors, fresh matter intake, or milk yield. On a visit basis, a high feeding rate was associated with a higher feed intake, a relationship that was exacerbated in the lame cows. In conclusion, cows can be characterized in particular by their feeding behavior, and lame cows differ from their non-lame pen-mates in terms of fewer feed station visits, faster eating, less time spent feeding, and more variable feeding behavior. Further, daily rumination time was slightly negatively associated with feeding rate, a relationship which calls for more research to quantify rumination efficiency relative to feeding rate

    Validating Pareto Optimal Operation Parameters of Polyp Detection Algorithms for CT Colonography

    Get PDF
    We evaluated a Pareto front-based multi-objective evolutionary algorithm for optimizing our CT colonography (CTC) computer-aided detection (CAD) system. The system identifies colonic polyps based on curvature and volumetric based features, where a set of thresholds for these features was optimized by the evolutionary algorithm. We utilized a two-fold cross-validation (CV) method to test if the optimized thresholds can be generalized to new data sets. We performed the CV method on 133 patients; each patient had a prone and a supine scan. There were 103 colonoscopically confirmed polyps resulting in 188 positive detections in CTC reading from either the prone or the supine scan or both. In the two-fold CV, we randomly divided the 133 patients into two cohorts. Each cohort was used to obtain the Pareto front by a multi-objective genetic algorithm, where a set of optimized thresholds was applied on the test cohort to get test results. This process was repeated twice so that each cohort was used in the training and testing process once. We averaged the two training Pareto fronts as our final training Pareto front and averaged the test results from the two runs in the CV as our final test results. Our experiments demonstrated that the averaged testing results were close to the mean Pareto front determined from the training process. We conclude that the Pareto front-based algorithm appears to be generalizable to new test data

    Construction of a digital fetus library for radiation dosimetry

    Get PDF
    Purpose: Accurate estimations of fetal absorbed dose and radiation risks are crucial for radiation protection and important for radiological imaging research owing to the high radiosensitivity of the fetus. Computational anthropomorphic models have been widely used in patient-specific radiation dosimetry calculations. In this work, we aim to build the first digital fetal library for more reliable and accurate radiation dosimetry studies. Acquisition and validation methods: Computed tomography (CT) images of abdominal and pelvic regions of 46 pregnant females were segmented by experienced medical physicists. The segmented tissues/organs include the body contour, skeleton, uterus, liver, kidney, intestine, stomach, lung, bladder, gall bladder, spleen, and pancreas for maternal body, and placenta, amniotic fluid, fetal body, fetal brain, and fetal skeleton. Nonuniform rational B-spline (NURBS) surfaces of each identified region was constructed manually using 3D modeling software. The Hounsfield unit values of each identified organs were gathered from CT images of pregnant patients and converted to tissue density. Organ volumes were further adjusted according to reference measurements for the developing fetus recommended by the World Health Organization (WHO) and International Commission on Radiological Protection. A series of anatomical parameters, including femur length, humerus length, biparietal diameter, abdominal circumference (FAC), and head circumference, were measured and compared with WHO recommendations. Data format and usage notes: The first fetal patient-specific model library was developed with the anatomical characteristics of each model derived from the corresponding patient whose gestational age varies between 8 and 35 weeks. Voxelized models are represented in the form of MCNP matrix input files representing the three-dimensional model of the fetus. The size distributions of each model are also provided in text files. All data are stored on Zenodo and are publicly accessible on the following link: https://zenodo.org/record/6471884. Potential applications: The constructed fetal models and maternal anatomical characteristics are consistent with the corresponding patients. The resulting computational fetus could be used in radiation dosimetry studies to improve the reliability of fetal dosimetry and radiation risks assessment. The advantages of NURBS surfaces in terms of adapting fetal postures and positions enable us to adequately assess their impact on radiation dosimetry calculations

    Deep learning in medical imaging and radiation therapy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/1/mp13264_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/2/mp13264.pd
    • …
    corecore