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Abstract
Purpose: Accurate estimations of fetal absorbed dose and radiation risks are
crucial for radiation protection and important for radiological imaging research
owing to the high radiosensitivity of the fetus. Computational anthropomorphic
models have been widely used in patient-specific radiation dosimetry calcula-
tions. In this work, we aim to build the first digital fetal library for more reliable
and accurate radiation dosimetry studies.
Acquisition and validation methods: Computed tomography (CT) images
of abdominal and pelvic regions of 46 pregnant females were segmented
by experienced medical physicists. The segmented tissues/organs include the
body contour, skeleton, uterus, liver, kidney, intestine, stomach, lung, bladder,
gall bladder, spleen, and pancreas for maternal body, and placenta, amniotic
fluid, fetal body, fetal brain, and fetal skeleton. Nonuniform rational B-spline
(NURBS) surfaces of each identified region was constructed manually using
3D modeling software. The Hounsfield unit values of each identified organs
were gathered from CT images of pregnant patients and converted to tissue
density. Organ volumes were further adjusted according to reference measure-
ments for the developing fetus recommended by the World Health Organization
(WHO) and International Commission on Radiological Protection. A series of
anatomical parameters, including femur length,humerus length,biparietal diam-
eter, abdominal circumference (FAC), and head circumference, were measured
and compared with WHO recommendations.
Data format and usage notes: The first fetal patient-specific model library was
developed with the anatomical characteristics of each model derived from the
corresponding patient whose gestational age varies between 8 and 35 weeks.
Voxelized models are represented in the form of MCNP matrix input files repre-
senting the three-dimensional model of the fetus. The size distributions of each
model are also provided in text files. All data are stored on Zenodo and are
publicly accessible on the following link: https://zenodo.org/record/6471884.
Potential applications: The constructed fetal models and maternal anatomi-
cal characteristics are consistent with the corresponding patients. The resulting
computational fetus could be used in radiation dosimetry studies to improve the
reliability of fetal dosimetry and radiation risks assessment. The advantages of
NURBS surfaces in terms of adapting fetal postures and positions enable us to
adequately assess their impact on radiation dosimetry calculations.
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1 INTRODUCTION

Accurate estimation of absorbed dose from ionizing
radiation has always been a public health concern.1

Pregnant females are part of the most vulnerable
group of patients concerned by exposure to ioniz-
ing radiation owing to the high radiosensitivity of the
fetus.2–4 Potential scenarios where the fetus would
be unfortunately exposed to ionizing radiation refer
to medical exposure,5,6 atomic bomb survivors,7 air-
line passengers,8 and professionally exposed staff.4

According to the National Council on Radiation Pro-
tection and Measurements Report no 184,9 in addition
to background radiation, the major source of ionizing
radiation exposure of the American public is related
to the medical exposure. Pregnant females might be
exposed to different sources of ionizing radiation,includ-
ing diagnostic radiology,1,10–12 radiation therapy,13,14

and nuclear medicine3,15–17 procedures. The health
effects of ionizing radiation on the embryo/fetus depend
on their gestational age: (i) The stage of 3–4 weeks
of pregnancy is supposed to be the most likely period
to suffer embryo death; (ii) whereas the pregnancy at
8–15 weeks is considered to be the most sensitive for
radiation risks of growth retardation, microcephaly, and
severe mental disability18–20; (iii) finally, at 16–40-week
gestation, fetal radiation exposure higher than 1.5 Gy
can result in both growth and mental retardation.19,20

Biological damage caused by hazardous effects may
occur sometimes after radiation exposure, potentially
leading to cancer or mutations.18 To reduce radiation
risks, radiation exposure should be controlled as low as
possible to reduce the fetal dose. As referred to some
clinical indications (e.g., the diagnosis of pulmonary
embolism), the benefit gained from radiological imaging
to pregnant patients should be significantly higher than
the associated radiation risks.21 Therefore, accurate
estimation of fetal radiation dose is highly desired.Direct
measurement of the radiation dose delivered to patients
from radiological imaging procedures is challenging but
not impossible. A well-established alternative is to use
Monte Carlo simulations for radiation transport per-
formed using realistic anthropomorphic computational
models.5,22

The development of computational models has gone
through three generations, namely, stylized phantoms
starting from the 1960s, voxel-based phantoms starting
from the 1990s, and boundary representation (BERP)-
based phantoms since 2000.23–25 Several maternal and
fetal phantoms have been developed using the three
aforementioned generations. Stabin et al.26 developed
the first set of mathematical stylized pregnant women
models. Computational phantoms based on the seg-
mentation of patient imaging data are more realistic
than stylized models. Angel et al.21 constructed 24
patient-specific voxel phantoms of pregnant women.

Nagaoka et al.27 established a voxel phantom of
pregnant women with realistic anatomical structures.
However, in voxel models, organ deformation is not flex-
ible enough, and the stepped structure may increase
the surface area.28 As a result, BERP models were pro-
posed to enable more flexible organ deformation and
posture change than voxel phantoms.29 Xu et al.30 devel-
oped the RPI models of pregnant females and fetuses
at 3, 6, and 9 months of gestation, and they also evalu-
ated fetal dose in computed tomography (CT) imaging,31

specific absorption fractions (SAFs) (Φi) from the mother
to fetal organs at different electron energies,32 as well
as SAFs for internal radiation dosimetry.33 Hoseinian
et al.22 reported on hybrid reference phantom series
of pregnant females with gestation ages of 3, 6, and 9
months derived from corresponding CT and MR images.
Maynard et al.34 developed a series of reference preg-
nant female models with gestational age of 8,10,15,20,
30, 35, and 38 weeks. Xie and Zaidi3 constructed eight
maternal phantoms representing different gestational
ages by adjusting the RPI models. However, the use of
reference models may result in 66% overestimation or
77% underestimation of the fetal dose35 as the impact
of the individual fetal position is non-negligible in radia-
tion dosimetry studies.36 Therefore, the construction of
more precise patient-specific computational models is
undoubtedly meaningful and important for the reason of
risk management and preventive health if we are willing
to implement accurate radiation dosimetry for pregnant
female patients.

The aim of this work is to construct a computa-
tional fetal library consistent with individual anatomical
parameters extracted from CT images of actual patients.
The developed patient-specific fetal phantom library has
been used in the calculation of fetal organ radiation
doses in our companion study.37

2 ACQUISITION AND VALIDATION
METHODS

2.1 Image acquisition for pregnant
patients

Imaging data of 46 pregnant patients were obtained
from the Geneva University Hospital, Switzerland.
These pregnant patients were referred to the emer-
gency department of the hospital for abdominal and
pelvic CT examinations. Pregnant patients came to
the emergency department initially for acute abdom-
inal pain and underwent ultrasound examination on
admission. In the case that ultrasound examination
did not allow us to draw any conclusive results or
magnetic resonance imaging examination could not be
carried out easily and immediately, the patients would
be administrated a CT scan. The selected patients
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TABLE 1 Fetal skull volume and organ scaling factor for the fetus model

Model number Gestational age
Real age
(weeks)

Skull volume
(cm3)

Organ scaling
factor

Fetus_Model-20 Second trimester 17 81.16 0.87

Fetus_Model-21 18 69.56 0.83

Fetus_Model-22 20 103.84 0.94

Fetus_Model-23 20 110.59 0.96

Fetus_Model-24 21 108.22 0.96

Fetus_Model-25 21 105.64 0.95

Fetus_Model-26 22 158.39 1.09

Fetus_Model-27a 22 55.25 0.76

70.59 0.83

Fetus_Model-28 23 189.73 1.15

Fetus_Model-29 Third trimester 25 496.89 1.59

Fetus_Model-30 25 192.30 1.16

Fetus_Model-31 25 374.02 1.45

Fetus_Model-32 25 210.74 1.19

Fetus_Model-33 26 274.59 1.30

Fetus_Model-34 26 223.03 1.22

Fetus_Model-35 28 273.87 1.30

Fetus_Model-36 29 273.87 1.30

Fetus_Model-37 29 366.26 1.44

Fetus_Model-38 29 341.77 1.40

Fetus_Model-39 30 340.73 1.40

Fetus_Model-40b 30 307.33 1.35

356.84 1.42

Fetus_Model-41 32 410.69 1.49

Fetus_Model-42 33 404.25 1.48

Fetus_Model-43 33 387.77 1.46

Fetus_Model-44 35 500.16 1.59

Fetus_Model-45 35 417.70 1.50

Fetus_Model-46 35 582.73 1.68
aThe first twins model at second trimester.
bThe second twins model at third trimester.

are composed by 16 patients at first trimester of
pregnancy, 12 patients of second trimester, and 18
of third trimester between 8 and 35 weeks of gesta-
tion. The fetal models were numbered consecutively
Fetus_Model-1–46.Specific gestational age information
of pregnant patients is provided in Table 1. CT imag-
ing data of pregnant patients used in this study were
acquired on one of the following CT scanners: General
Electric (GE Medical Systems, Wisconsin) LightSpeed
VCT, GE Discovery CT750 HD, Siemens Definition AS,
Siemens SOMATOM Force (Siemens Healthineers,
Forchheim, Germany), and Philips Brilliance 40 (Royal
Philips, Amsterdam, the Netherlands). The final phan-
tom length of each pregnant patient depends on the
scan length of the CT scan that includes at least the

anatomical structures from the lower chest to the pubic
symphysis.

2.2 Image segmentation

The desired anatomical structures were segmented
by the combination of automatic thresholding-based
and manual segmentations. The images were imported
into Adobe Photoshop image processing software and
the anatomical boundaries of body contours, skeleton,
uterus, liver, kidney, intestine, stomach, lung, bladder, gall
bladder, spleen, and pancreas for maternal body and
the placenta, amniotic fluid, fetal body, fetal brain, and
fetal skeleton for the conceptus manually segmented,
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F IGURE 1 Segmentation of low-dose computed tomography (CT) images of pregnant patients into different tissue classes

as shown in Figure 1. The identified organs and tis-
sues were reconstructed as polygon mesh models
and imported into 3D modeling software for further
processing.

2.3 Construction of patient-specific
fetal computable phantom

2.3.1 Fetal skeleton models

The polygon mesh model of the fetal skeleton was
imported into Rhinoceros software, where the nonuni-
form rational B-spline (NURBS) model is constructed
from the polygon mesh model by lofting. As the scaffold
of the human body, the structure of the skeleton deter-
mines the shape of the human body. In this study, the
fetal skeleton was roughly divided into the following sites:
skull, spine, ribs, clavicle, scapula, humerus, ulna, radius,
hand bone, hip, femur, fibula, tibia, and foot bone. Before
the construction of the fetal skeleton model, the previous
parts were distinguished and saved in different layers.

In Rhinoceros, the basic workflow for surface recon-
struction includes (i) drawing the outline of the polygonal
mesh model of the fetal bone through the Counter com-
mand; (ii) using the Rebuild command to reconstruct the
contour lines, while if necessary, the control points of
organ contours can be deleted or modified to improve
the smoothness of generated NURBS surfaces; and
(iii) using the Loft command to construct the surface
from the contours. The general process of making a
NURBS model from a polygon mesh model is depicted

in Appendix Figure 1. Additional operations may be
needed for the construction of some individual parts.For
the fetal skull, the mandible and other parts of the skull
need to be constructed separately and combined by the
Join command.For the fetal ribs, the Pipe command was
used to generate a series of pipes to represent the ribs.
For the fetal spine, the form of overlapping and intersect-
ing vertebral segments was adopted for the generation
of the whole spine. The two surfaces of the ilium and
ischia, the ilium and the pubis, were constructed sepa-
rately because of the obturator foramen of the hip,which
then combined together to form the hip bone.

2.3.2 Fetal organ models

The surface reconstruction process of the fetal brain
is similar to what has been described in Section 2.3.1
whereas the spinal cord is constructed as a pipeline
model inside the spine. The fetal organ constructed
in this study was originally derived from a certain
scale of the organ of the Anchor model, which has
been constructed in previous work by our group.3

The Anchor model uses advanced BERP geometry
of NURBS and polygonal meshes consisting of 25
organs/tissues, whereas organ masses were adjusted
carefully to match the reference data of International
Commission on Radiological Protection (ICRP)38 with
differences less than 0.3%. Fetal organs of the esopha-
gus,eyes, thyroid, lungs,heart, kidney, liver, stomach,gall
bladder, salivary gland, large intestine, small intestine,
urinary bladder, skin, ovaries, testis, adrenal, pancreas,
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spleen, and thymus were constructed from the anchor
phantom. Except the skeleton, brain, and spinal cord
mentioned earlier, which were constructed separately,
the detailed construction steps of the other fetal organs
are described as follows:

Step 1: Calculation of organ scaling factor r reflecting
the ratio of organ volume Vao of the constructed fetal
phantom to the corresponding organ volume VAO of the
anchor phantom, determined by the following formula:

r =
3

√
Vao

VAO
=

3

√
Vas

VAS
(1)

where Vas refers to the skull volume of the fetal phantom
to be constructed, and VAS refers to the skull volume of
the anchor phantom.The organ scaling factor calculated
by Equation (1) is shown in Table 1. After estimating
organ scaling factors, the fetal organs were placed in the
corresponding anatomical positions using rotation and
displacement tools. The placement of the eyes is based
on the position of the eye sockets in the polygonal mesh
model of the skull.

Step 2: In the literature, the femoral length (FL) is
often used for the estimation of the fetus weight.39,40 In
this work, we measured the fetal FL from the polygo-
nal mesh model of the fetal skeleton. This process will
be described in detail in Section 2.3.5. The 50 quartile
FL reference value given in the World Health Organiza-
tion (WHO) fetal growth charts41 was fitted with the 50
quartile estimated fetal weight reference value (W) as

W = 47.612 e0.0599×FL (2)

The estimated fetal weight of each computational
fetal model was calculated. The measured FL values
for each model are shown in Table 3. The reference
mass of 11 fetal organs given in the ICRP Publication
8938 were fitted with the reference fetal body weight.
For organs lacking given reference masses at different
gestational ages, the ratio for organ mass to body mass
was calculated. The fitted correlations between organ
mass and body mass are summarized in Appendix
Table 1.

Step 3: The Hounsfield unit (HU) values of the mater-
nal uterus, placenta, amniotic fluid, fetal brain, fetal soft
tissue,fetal liver,fetal bone cortex,and fetal bone marrow
were measured using the ImageJ software package.1

Regions of interest were defined, as shown in Appendix
Figure 2, to calculate the average HU and, hence, tis-
sue density according to the formula given by Schneider
et al.42 The obtained density at the same gestational
period was averaged.

Step 4: The fetal organ models were scaled to meet
the target volume, whereas the organ position was

1 https://imagej.nih.gov/ T
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F IGURE 2 3D visualization of the fetal
models in the first, second, and third trimesters.
(Green for fetal brain, pink for placenta, blue for
uterus, whereas the red boxes correspond to two
twin models)

carefully adjusted to avoid overlap and to ensure that
the organs remain inside the chest and abdominal
cavity.

2.3.3 Maternal abdominal model

Based on the constructed polygonal mesh models of the
maternal body and other organs, the models of mater-
nal abdomen and internal organs were constructed
following identical procedures to those described in
Section 2.3.1.

2.3.4 Fetal models at 8–16 weeks

The fetus is invisible in low-dose CT images of preg-
nant patients at gestational age between 8 and 16
weeks. The crown-rump length, defined as the distance

between the top of the head and the lowest buttocks of
the fetus, is less than 24 mm for fetuses younger than
16-week gestational age.43 For pregnant patients at this
gestational period, we only segmented maternal struc-
tures and the uterus, whereas the “Anchor”models of 8-
and 16-week gestational ages were scaled according
to the corresponding ICRP reference fetal weights for
the construction of fetus models.

2.3.5 Measurement of fetal anatomical
parameters

After the construction of the computational fetus library,
the anatomical parameters of the fetus, such as FL,
humerus length (HL), biparietal diameter (BPD), head
circumference (HC), and abdominal circumference
(FAC), were further measured. To ensure the authentic-
ity and accuracy of the implemented measurements, FL
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and HL were measured on the polygonal mesh model
of the femur and humerus, whereas HC, BPD and
FAC were measured on the reconstructed NURBS sur-
face to avoid the measurement errors introduced by the
stepped shape of skull and fetal contour segmentations.

2.3.6 Phantom evaluation

To evaluate the realism and accuracy of the constructed
fetal phantom library, the measured fetal anatomical
parameters and organ masses were compared with the
reference values of the ICRP publication 8938 and the
WHO report.41 The relationship between the reference
values of fetal anatomical parameters given in WHO and
gestational weeks was fitted,whereas the measured val-
ues reported in this study were plotted on the same map
in the form of scattered data for comparison. In addition,
the maximum, minimum, and median of organ masses
of 46 developed phantoms were calculated and com-
pared with the corresponding reference values given by
ICRP publication 89.

3 DATA FORMAT AND USAGE NOTES

3.1 Computational fetus library for
pregnant female and fetus

A computational fetus library was constructed, includ-
ing 46 fetus models with gestational age ranging from
8 to 35 weeks. It takes about 4 days to construct
one fetal model. The visualization of 3D images of
the developed fetus models (including uterus and pla-
centa) at the second and third trimester are shown in
Figure 2. The computational fetus of Fetus_Model-25
and Fetus_Model-39 are shown in Figure 3. The fetal
skin model with eyes, fetal organ model, except the skin,
and the fetal skeleton model of fetus Fetus_Model-46
are illustrated in Figure 4.

All generated models have been voxelized and
uploaded to the Zenodo collection that is publicly acces-
sible using the following link: https://zenodo.org/record/
6471884.The voxelized models are provided as MCNPX
input files, which are text files composed of 2D array of
integers corresponding to the fetal tissues and maternal
organs. The voxel size, matrix dimension, and material
definitions are specified, whereas all models are cen-
tered on the source-to-isocenter distance in both x–y
plane and z direction.

3.2 Fetal organs density

The density of the fetal skeleton changes significantly
across different gestational ages.44,45 In the current
study, the density of the fetal skeleton for each indi-

vidual patient was calculated by measuring the HUs
on CT images and averaging them at each age of
pregnancy. The organs considered for density measure-
ment include amniotic fluid, placenta and fetal bones,
bone marrow,brain, liver, and soft tissue.Table 2 lists the
adopted organ density for the fetus,whereas the density
of other fetal organs is set similar to fetal soft-tissue.The
maternal organ/tissue listed in Table 2,such as placenta
and amniotic fluid, their densities were calculated from
HUs measured on CT images, whereas the density of
other organs/tissues, such as skin and uterine wall, was
determined according to ICRP publication 89.38 The
density of fetal skeleton and bone marrow increases
gradually with increasing gestational age. The average
density of the fetal skeleton is 1.058 and 1.509 g/cm3

in the 2nd and 9th month, respectively.

3.3 Anatomical characteristics of the
fetus

The anatomical parameters of the computational mod-
els were measured to investigate the correlation
between the anatomical characteristics and radiation
dosimetry calculations. The minimum BPD is 8.69 mm,
whereas the maximum BPD is 97.02 mm. The mea-
sured FL, HL, HC, and FAC of the fetus ranges from
27.88 to 72.68 mm, from 26.01 to 64.31 mm, from 32.71
to 341.54 mm, and from 148.9 to 349.2 mm, respec-
tively. The average values of BPD, FL, HL, HC, and FAC
are 60.42, 49.05, 45.13, 212.08, and 236 mm, respec-
tively.The measured anatomical parameters are listed in
Table 3,whereas Figure 5 compares the measurements
of FL, HL, HC, BPD, and FAC with reference values
reported by WHO.41 The estimated fetal weight calcu-
lated by Equation (2) was also compared. The black
line is the quadratic fitting curve of the 50-percentile ref-
erence value obtained from the WHO report, whereas
the red data points represent the measured value for
each individual fetus. The mean differences of FL, HL,
BPD, HC, abdominal circumference, and estimated fetal
weight between the measured values and correspond-
ing quadratic fitting curve of WHO were 18%,17%,13%,
9%, 14%, and 47%, respectively. The anatomical char-
acteristics of the developed models fit well with the
recommendations of WHO with a coherent trend,hence
reflecting the anatomical reliability of the constructed
models.

3.4 Fetal organ masses

Fetal organ masses were estimated for each model.
Figure 6 shows the median, maximum, and minimum
values of fetal weight and fetal organ mass of the
brain, thyroid, heart, adrenal gland, spinal cord, kidney,
liver, lung, pancreas, spleen, and thymus. The reference

https://zenodo.org/record/6471884
https://zenodo.org/record/6471884
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F IGURE 3 3D visualization of maternal phantoms (first row) at the second trimester (left) and third trimester (right) with their corresponding
fetus models (second row)

F IGURE 4 Surface rendering of 35-week-old fetus with (a) the
skin model, (b) the organ model, and (c) the skeleton model

values given by ICRP publication 8938 were also used
for comparison. For most cases, there was a good
agreement between the organ masses reported in this
work and ICRP reference values.

4 DISCUSSION

We constructed the first computational fetus library
consisting of 46 models with gestational age ranging
from 8 to 35 weeks. The developed fetal models include

25 identified organs/tissues. Their volumes were care-
fully adjusted to match the reference volume, whereas
the HU measurements were used to determine corre-
sponding organ/tissue densities. The phantom library
was constructed based on real clinical CT images with
the contour and skeleton of the model, size, position,
and posture of the fetus being consistent with scanned
patients. The density of fetal organs was calculated
based on measured HUs from CT images, which pro-
vides better authenticity than ICRP reference values.
To the best of our knowledge, the fetuses in reported
reference pregnant phantoms are mostly at head-down
position, thus failing to represent the changing pos-
ture and position of the fetuses in pregnant women at
different gestational ages, which may introduce errors
for dose assessment and radiation risk analysis for
the developing fetuses. The generated NURBS model
is suitable for deformation and displacement, thus
enabling us to study the effect of conceptus position
and fetal posture on radiation dosimetry calculations.

The organ masses of the computational fetus library
are in good agreement with reference values of ICRP
publication 89,38 whereas the anatomical parameters
of the developing fetus show a coherent trend with the
values reported by WHO.41 The measured parameters
of the developed models are slightly higher than the
reported values of WHO, and this may be attributed
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F IGURE 5 Comparison of anatomical parameters between this work and the reference values reported in World Health Organization
(WHO) report. The red data points refer to measured values in this work, whereas the solid line represents the fitting curve of WHO data.

to the different subject populations (one hospital in a
single country for this study vs. three ethnic groups
for WHO). The constructed computational fetus library
provides more accurate representation of anatomi-
cal changes for the developing fetus. With increasing
concerns related to radiological imaging of pregnant
patients, this library provides a precious tool for radiation
dosimetry and radiation protection research on preg-
nant patients.The developed computational fetus library
will be made available to the scientific community for
academic use.

This study bears inherently a number of limitations.
The segmentation of fetal organs was performed on
low-dose CT images where image noise and ambiguity

might introduce additional errors to the segmenta-
tion results, including unrecognized or over-recognized
regions of identified tissues. Although the constructed
library included the largest state-of -the-art developing
fetus group with gestational age ranging from 8 to
35 weeks, additional data from other regions/countries
would be highly appreciated to compensate variability
existing in the current patient population.

5 CONCLUSION

The developed digital fetus library will be used for
radiation dosimetry studies directed toward risk-benefit
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F IGURE 6 Comparison of fetal organ mass between models developed in this work and the International Commission on Radiological
Protection (ICRP) reference values

analysis for pregnant females receiving abdominal and
pelvic CT examinations. The characteristics of NURBS
surfaces make them suitable to generate new models
through deformation and displacement, which enable
our understanding on the effect of fetal postures
and positions on radiation dose calculations in vari-
ous scenarios. Such studies are expected to pave the
way for building a comprehensive radiation dosimetry
framework for de-risking pregnant patients undergoing
radiological examinations.
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