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Validating Pareto Optimal Operation Parameters of Polyp
Detection Algorithms for CT Colonography

Jiang Lia, Adam Huanga, Nicholas Petrickb, Jianhua Yaoa and Ronald M. Summersa

aDiagnostic Radiology Department, Clinical Center, NIH
bNIBIB/CDRH, Joint Laboratory for the Assessment of Medical Imaging System, FDA

ABSTRACT

We evaluated a Pareto front-based multiobjective evolutionary algorithm for optimizing our CT colonography
(CTC) computer-aided detection (CAD) system. The system identifies colonic polyps based on curvature and
volumetric based features, where a set of thresholds for these features was optimized by an evolutionary algorithm.
We utilized a two-fold cross-validation (CV) method to test if the optimized thresholds can be generalized to new
data sets. We performed the CV method on 133 patients; each patient had a prone and a supine scan. There
were 103 colonoscopically confirmed polyps resulting in 188 positive detections in CTC reading from either the
prone or the supine scan or both. In the two-fold CV, we randomly divided the 133 patients into two cohorts.
Each cohort was used to obtain the Pareto front by a multiobjective genetic algorithm, where a set of optimized
thresholds was applied on the test cohort to get test results. This process was repeated twice so that each
cohort was used in the training and testing process once. We averaged the two training Pareto fronts as our
final training Pareto front and averaged the test results from the two runs in the CV as our final test results.
Our experiments demonstrated that the averaged testing results were close to the mean Pareto front determined
from the training process. We conclude that the Pareto front-based algorithm appears to be generalizable to
new test data.

Keywords: Computer-aided detection, Pattern recognition, Statistical methods, Multiobjective evolution, Ge-
netic algorithm

1. INTRODUCTION

Colon cancer is the second leading cause of cancer death in the U.S.1 A number of CT colonography (CTC)
computer-aided detection (CAD) systems for the early detection of colonic polyps are under development.2–7

Successful detection of polyps will increase the possibility of appropriate intervention for these polyps. One of the
challenges for polyp detection is to accurately identify polyp candidates on the colon surface. We have developed
a Pareto front-based multiobjective evolutionary algorithm for the initial polyp detection, where excellent results
were achieved from our training data sets.8 The purpose of this paper is to evaluate if the optimized results
produced by the Pareto front-based algorithm using training data sets can be generalized to unseen data.

In the CTC procedure, hundreds of CT scans are taken for a patient both from supine and prone views. The
CTC CAD system under development by our group2 takes the following four ordered steps to detect colon polyps.
After a computer reads all CT images, the CAD program first segments the colon surface by a region growing
method. The CAD program then identifies initial polyp candidates along the colon surface based on curvature
and geometry information. The third step is to determine the 3D segmentation of each surface detection polyp
candidate in the 3D CT volume, and to calculate quantitative features for the candidates. Finally, a decision
of true polyp or false positive is made by a classifier based on the features that are proved clinically relevant.
Previous efforts were more focused on optimizing classification schemes such as neural network, decision tree or
support vector machine, while little work was put on how to optimize the initial polyp detections on the colon
surface due to lack of closed-form solutions. In the initial polyp detection, some simple thresholds are set for
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features such as curvature and size of lesion to cluster vertices on the colon surface as an initial detection. These
thresholds were either empirically chosen or derived from mathematical modeling.5, 6 In our previous paper,8

we presented a multiobjective optimization algorithm for setting the optimal thresholds and showed good results
on training data sets. In this paper, we present validation results on testing data sets for optimized thresholds.

Setting optimal thresholds for curvature-based features to create polyp candidates on the colon surface is
characterized by the presence of two conflicting objectives: minimizing both the number of missed polyps and
the false positive rate. Both objective functions are difficult, and perhaps impossible, to be expressed in closed
forms. A practical solution is to look at this parameter setting problem as a multiobjective evolutionary problem.
We used the improved strength Pareto evolutionary algorithm (SPEA2)9 to find the Pareto optimal set, which
is a set of non-inferior or admissible solutions for the problem. This optimal set provides more freedom for a
decision maker when making trade-offs between the two objectives. In the following sections, we first describe
several curvature features and a sequential classifier to create initial polyp candidates based on the features.
We then present the problem formation for optimizing the sequential classifier. Finally, validation results of the
optimized sequential classifier are given.

2. METHOD

In this section, we first describe an initial polyp clustering method which uses a sequential classifier. We then
briey describe how to optimize and validate the algorithm.

2.1. Clustering Polyp Candidates

Colonic polyps appear as elliptical protrusions on the inner wall of the colon. Colonic polyps can be characterized
by surface curvatures. Surface curvatures are local geometric properties which quantitatively describe how the
surface curves or bends locally. This surface shape can be characterized by two principal curvatures which are
the maximum k1 and minimum k2 normal curvatures along the principal tangent directions. These principal
curvatures are calculated by a kernel method, and polyps can be identified as regions with negative k1 and k2.10

We calculate the mean curvature H and Gaussian curvature K for each vertex on the surface using a kernel
method.10 To form polyp candidates, we first check vertices on the surface if the following criteria are satisfied,

x1 < H < x2 and x3 < K < x4 (1)

where xi, i = 1, . . . , 4 are preset thresholds to be optimized. Vertices that meet the above conditions and share an
edge are clustered together as initial polyp candidates. After all vertices are examined, two additional features,
mean sphericity Sm and number of vertices N , are calculated for each formed polyp candidate,

Sm = 2
∣
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(2)

where the summations are over the formed polyp candidate. The sphericity denotes how round a surface is and
ranges from 0 (sphere) to 2 (ridge). Any intermediate value represents an ellipsoid. If

x5 < Sm < x6 and N > x7 (3)

where x5, . . . , x7 are again thresholds, the polyp candidate is kept and delivered to the next step.

The next step is to examine the polyp candidate by checking how many vertices in the candidate and the
vertices’ neighbors, which might be outside of the candidate, satisfy the conditions,

x8 < H < x9, x10 < K < x11 and x12 < S < x13 (4)

where again, x8, . . . , x13 are preset thresholds, and

S = 2 · k2 − k1

k2 + k1
(5)
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is sphericity for a single vertex. In this step, the polyp candidate can grow or shrink depending upon if the set of
thresholds x8 . . . x13 are “wider” or “narrower” than those in equation (1) and (3). If x8 . . . x13 are “wider” than
those in equation (1) and (3), the classifier will let more vertices be included in the polyp candidate such that the
polyp candidate will grow. On the other hand, if a set of “narrower” thresholds are set, only part of the vertices
in the polyp candidate can satisfy the criteria in equation (4). Finally, if Nb, the number of vertices satisfying
(4), is greater than x14, where x14 is another threshold, the candidate is delivered to the polyp segmentation
procedure.11

2.2. Optimization Thresholds
The task of our optimization problem is to find a set of thresholds for the sequential classifier such that the
CTC CAD system produces the minimal number of false negatives and false positive rate in the initial detection
procedure. However, those two objectives are conflicting, and minimizing one of them usually leads to a increase
of another. In practice, we must make trade-offs between the two objectives to meet our requirements. Pareto
front based multiobjective optimization algorithms provide a set of non-dominated solutions to the problem at
hand, which allows trade-offs based on our needs. Therefore, it is natural to form our task as a multiobjective
optimization problem.

Let f1(−→x and f2(−→x ) denote the number of missed polyps and average number of false positives per data set,
respectively, where −→x is a 14-dimensional threshold vector

−→x = {x1, . . . , x14|x1, . . . , x6 ∈ R, x8 . . . x13 ∈ R, x7 ∈ I, x14 ∈ I} (6)

Our multiobjective minimization problem (MOP) can be stated as follows,

min−→x
−→
f (−→x ) = {f1(−→x ), f2(−→x )} (7)

subject to

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ [−10, 0), x2 ∈ [−10, 0), x1 < x2,

x3 ∈ [0, 50], x4 ∈ [0, 100], x3 < x4,

x5 = 0, x6 ∈ (0, 2], x7 ∈ [6, 30],
x8 ∈ [−10, 0), x9 ∈ [−10, 0), x8 < x9,

x10 ∈ [0, 50], x11 ∈ [0, 100], x10 < x11,

x12 = 0, x13 ∈ (0, 2], x12 < x13,

x14 ∈ [6, 30].

(8)

The range for each threshold was determined experimentally such that it is wide enough to include all solutions
of interest. This pre-selecting of the threshold range is not a necessary step, but it allows reducing time and
computational burden. The global optima of an MOP is called Pareto optimal set, which consists of solutions
(thresholds) that are not dominated by any other solutions.12 A solution −→x 1 is said to dominate (�) −→x 2 if
objective vector

−→
f (−→x 1) is less than or equal to

−→
f (−→x 2) in all attributes, and strictly less than in at least one

attribute,
{−→x 1 � −→x 2, iff

∀i ∈ {1, 2} : fi(−→x 1) ≤ fi(−→x 2) ∧ ∃j ∈ {1, 2} : fj(−→x 1) < fj(−→x 2)
(9)

The space formed by the objective vectors of Pareto optimal solutions is called the Pareto front. It is clear
that any final design solution should preferably be a member of the Pareto optimal set. Therefore, identifying
a set of Pareto optimal solutions is key for a decision maker’s selection of a “compromise” solution(s) satisfying
the objectives as best as possible.

The Pareto optimal solution are often obtained by multiobjective optimization algorithms. The multiobjective
optimization technique was first investigated in 1985,13 and since then, many multiobjective optimization
algorithms have been reported.14–17 We are particularly interested in the SPEA2 algorithm,9, 18 because of its
fast convergence rate.19 Further details on the SPEA2 algorithm for automatic polyp detection task can be
found in.8
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2.3. Validating Optimal Solutions

Our previous results showed that the sensitivity and specificity of our CTC CAD system for the initial polyp
detection can be increased greatly on training data sets.8 To validate the generalization capability of Pareto
optimal sets obtained by SPEA2, we used a two-fold cross-validation (CV) method to see if testing results are
close to training results. We performed CV on 133 patients, each patient had a prone and a supine CT scan.
There were 103 colonoscopically confirmed polyps resulting in 188 positive detections in CTC reading. Some of
the polyps were visible on both prone and supine views. We randomly divided the 133 patients’ CT scans into
two parts. Each part was held out as a test set. The remaining set was used by SPEA2 to get the Pareto front,
and the obtained Pareto optimal set was used on the held-out part to provide test results. The training and test
procedures were repeated two times so that each part was used as a test set only once. Finally, we average the
training Pareto fronts and the test results to validate if the mean Pareto front is close to the average test results.

3. RESULTS AND DISCUSSION

We present our experiments and results of the validation in this section. Discussion on the results are also
provided.

3.1. Data Acquisition

The CTC procedure was performed on 133 patients with a high suspicion of colonic polyps. All polyps were
verified by follow-up optical colonoscopy. These patients were chosen from a larger cohort who underwent a CTC
screening procedure. The majority of the polyps were identified on both the prone and supine views. There were
103 colonoscopically confirmed polyps resulting 188 positive detections.

3.2. Results

Fig. 1 shows some polyp detections on the colon surface. Fig. 2 shows our previous results on a subset of the
data set used in this paper, where we obtained the optimized thresholds on 27 patients. Fig.2 compares the
results obtained by SPEA2 to that by heuristic, where the horizontal axis represents false positive rate per data
set and the vertical axis denotes the number of false negatives. It is clear that the Pareto front provided a set
of solutions for our initial polyp detection while our previous system only resulted in one solution which was
dominated by the optimized Pareto front solutions. The remaining question is that if the optimized thresholds
are able to be generalized to new data set.

Fig. 3 shows the two-fold CV results on the 133 patients, where we plot average Pareto front on training
data and mean results on test data in the two-fold CV. Again, the horizontal axis in Fig. 3 denotes the false
positive rate per data set. In the two-fold CV, we randomly divided the 133 patients into two parts, and it is
not guaranteed that each part will have the same number of polyps. For a fair comparison between the training
and testing results in the CV, we used the fraction of the false negatives as denoted in the vertical axis in Fig. 3.

It is observed that the test results are close to the training Pareto front. Note that a lower curve is better
because it reduced both false negatives and false positive rate. We should mention that the test results may or
may not contain Pareto dominated solutions. Therefore, the test results do not necessarily compose a Pareto
front.

3.3. Discussion

Multiobjective optimization algorithms have been applied to generate upper bounds of receiver operating char-
acteristic (ROC) or free-response ROC (FROC) curves.16, 17 However, the investigators efforts were put only
on training data sets. It is not clear if the ROC or FROC curves generated by the multiobjective optimization
technique are still valid for testing data sets. To our knowledge, this is the first attempt to validate Pareto
optimal solutions in the setting of a CTC CAD system. From our experiments, the multiobjective optimization
technique appears to be a valid tool to adjust parameters in the CTC CAD system. We are currently working
to validate a CTC CAD system that uses one of the Pareto optimal sets for the sequential classifier in the initial
polyp detection on the colon surface. We plan to examine if the optimized sequential classifier can improve the
whole system, in term of the FROC curve on independent testing data.
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4. CONCLUSION

We have implemented a multiobjective evolutionary algorithm, SPEA2, for optimizing a CAD polyp detection
system. We demonstrated that the algorithm is able to generalized to new data for our CTC CAD system. The
Pareto front-based optimization algorithm appears to be a robust and powerful tool for optimizing CTC CAD
systems.
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Figure 1. Polyp detection samples comparison. The first column consists of missed true detection examples by our old
system and the second column represents the same detections picked by our system using one set of optimized thresholds,
which is chosen from the training Pareto optimal set. The blue dots represent ground truth vertices for polyps, and the
green dots denote detected ground truth vertices.
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Figure 3. Two-fold cross-validation results on 133 patients
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