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Automatic Diagnosis for Prostate Cancer using    
Run-length Matrix Method 

 
Xiaoyan Suna, Shao-Hui Chuanga, Jiang Lia*, Frederic McKenziea 

aDept. of Electrical and Computer Engineering  
Old Dominion University, Norfolk VA, USA, 23529-0246         

 

ABSTRACT 

Prostate cancer is the most common type of cancer and the second leading cause of cancer death among men in US1. 
Quantitative assessment of prostate histology provides potential automatic classification of prostate lesions and 
prediction of response to therapy. Traditionally, prostate cancer diagnosis is made by the analysis of prostate-specific 
antigen (PSA) levels and histopathological images of biopsy samples under microscopes. In this application, we utilize a 
texture analysis method based on the run-length matrix for identifying tissue abnormalities in prostate histology. A tissue 
sample was collected from a radical prostatectomy, H&E fixed, and assessed by a pathologist as normal tissue or 
prostatic carcinoma (PCa). The sample was then subsequently digitized at 50X magnification. We divided the digitized 
image into sub-regions of 20 X 20 pixels and classified each sub-region as normal or PCa by a texture analysis method. 
In the texture analysis, we computed texture features for each of the sub-regions based on the Gray-level Run-length 
Matrix(GL-RLM). Those features include LGRE, HGRE and RPC from the run-length matrix, mean and standard 
deviation of the pixel intensity. We utilized a feature selection algorithm to select a set of effective features and used a 
multi-layer perceptron (MLP) classifier to distinguish normal from PCa. In total, the whole histological image was 
divided into 42 PCa and 6280 normal regions. Three-fold cross validation results show that the proposed method 
achieves an average classification accuracy of 89.5% with a sensitivity and specificity of 90.48% and 89.49%, 
respectively. 

Keywords: Prostate cancer, Histopathology, Texture analysis, CAD development 
 

1. INTRODUCTION 
Prostate cancer is the most common type of cancer and the second leading cause of cancer death among men in US1 . 
Out of every three men who are diagnosed with cancer each year, one is diagnosed with prostate cancer1. It is known that 
prostate cancer can be cured by a number of therapies if it is detected early while still localized in the prostate. Prostate-
specific antigen (PSA) in serum is currently the most widely used approach for early detection of PCa. A high PSA 
concentration implies a possible high risk of prostate cancer. Usually, pathologists can also check the histopathological 
images of biopsy samples from patients under microscopes, and make diagnoses based on their own experience. With the 
advancements of machine learning technology, automated cancer diagnosis becomes a possibility. In this paper, we 
present an automated prostate cancer diagnosis method using a Gray Level Run-Length Matrix (GL-RLM) based texture 
analysis technique.  

 

2. BACKGROUND 
The Gray Level Run Length Matrix (GL-RLM) method was proposed by Galloway in 19752 and by Chu et al. in 19903. 
GL-RLM extracts higher order statistical texture features and provides a quantitative description of the texture features in 
a given image. By definition, consecutive pixels with the same gray level, in a given direction, constitute a gray level run 
and the number of pixels in the run is called run length. For a given image, we can compute its GL-RLM along a given  
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direction. Each element p(i, j) in the GL-RLM represents the total number of runs with pixel gray level of i and run 
length of j in the whole images. For an image with nr pixels, the size of the run-length matrix will be M by N, where M 
and N are the maximum gray level and the possible maximum run length in the corresponding image, respectively.  

As indicated by its definition, relatively long gray-level runs would occur more often in a coarse texture while primarily 
short runs would describe fine textures. From the run-length matrix, various texture features can be derived. The 
following are eleven descriptors typically extracted from the run-length matrices4: short run emphasis (SRE), long run 
emphasis (LRE), high gray-level run emphasis (HGRE), low gray-level run emphasis (LGRE), pair-wise combinations 
of  the length and gray level emphasis (SRLGE, SRHGE, LRLGE, LRHGE), run-length non-uniformity (RLNU), grey-
level non-uniformity (GLNU), and run percentage (RPC). Formulas for  calculating these feature descriptors are listed in 
the appendix. 

For a given image, GL-RLMs with any given direction can be computed. Typical orientations used in run length method 
are four principle directions: 0°, 45°, 90°, and 135°.5  Once the run-length matrices are calculated along each direction, 
those feature descriptors can be used either with respect to each direction or a combination of all directions to get a 
global view of texture information.6  

 

3. MATERIALS 
3.1 Tissue image 

A tissue sample was collected from a radical prostatectomy, H&E fixed, and assessed by a pathologist as normal tissue 
or prostatic carcinoma (PCa). Nine sub-images of the histopathological prostate tissue sample were taken by Hirox HI-
SCOPE KH-3000 at 50× magnification. All sub-images were RGB color images and saved as TIFF format. A whole 
image was manually reconstructed from these 9 sub-images by using Adobe Photoshop CS3. The reconstructed image 
has a resolution of 3416*4213 pixels (Fig.2(a)).   

3.2 Cancerous region diagnosis 

The regions containing cancerous cells were histopathologically identified. In addition, MALDI Mass Spectrometric data 
of the same tissue area as the histopathological image was analyzed by BioMap, which provides powerful processing and 
displaying abilities for MSI data7, to get another diagnostic result. These two results were combined to get the most 
probable region where cancer occurred.  

 

4. METHODS 
4.1 System overview 

 
Fig. 1. Overview of the procedure for automatic prostate cancer diagnosis. 

Figure 1 shows the system diagram where each step will be described in this section. 
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4.2 Pre-processing 

4.2.1 Region of interest segmentation 

In the histopathological image, many pixels act as background that has no cell type information. To accelerate processing 
speed, the region of interest (tissue regions) was extracted from its background. Because the background in the image is 
all dark, sub-images whose pixel values were lower than a preset threshold can be identified as background. Otherwise, 
pixels were marked as within the region of interest for later processing.  

4.2.2 Gray-level mapping 

Using too many gray-level intensities may cause large amounts of small run-length values in the run-length matrix. 
Therefore, it is necessary to group the gray levels into smaller bins. For 8-bit gray level images, research indicates that 
usually 16 gray levels are sufficient for texture discrimination or segmentation8. Here, we use a linear mapping to 
quantize the gray levels into values of 0~15.  

4.2.3 Sub-regions separation 

Feature extraction for automated cancer diagnosis can be done at the cellular-level or the tissue-level.9 The latter does 
not necessitate cell segmentation therefore simplifies the pre-processing. In this paper, we extract texture features at the 
tissue-level. By dividing the whole image into several sub-images, features are extracted from the  small tissue area 
within each sub-image. Each sub-images is then classified as PCa or normal tissue based on the extracted features. In 
order to correctly classify each tissue area, the size of the sub-images should be chosen carefully. Too large areas may 
contain both cancerous and normal cells while too small areas contain insufficient information. By observing the object 
image, we choose the size of sub-images to be 20*20 pixels.    

4.3 Feature extraction 

After gray level mapping, four run-length matrices according to the four principle directions are calculated for each sub-
image. Because we only want to get a global view of the texture information in the image, a new matrix is generated by 
summing the four matrices together, 

Pcom = P0+P45+P90+P135. 

where P0, P45, P90 and P135 is the run-length matrix along directions of 0°, 45°, 90°, and 135°, respectively. Then, for each 
sub-region image, the 11 texture features are extracted from matrix Pcom according to the formulas listed in appendix. 
Along with two intensity-based features (mean and standard deviation), 13 features in total are extracted for each sub-
region. The work in preprocessing and feature extraction parts  was done by using Matlab 7.0 (MathWork. Inc.) 

4.4 Feature selection 

Irrelevant features may cause problems like increased computation, curse of dimensionality and convergence difficulties. 
10 Feature selection, which is used to generate a compact subset of features leading to an accurate model based on the 
limited amount of data, is necessary before the classification stage to avoid these problems.  A piecewise linear network 
method was used here to perform feature selection. 10 The algorithm performs the following steps: 

1) Generate an appropriate piecewise linear network (PLN) model for the given data set using a cross-validation 
(CV) method; 

2) Apply the orthonormal least squares (OLS) procedure to the PLN model; 

3) Select useful feature subsets through a floating search algorithm. 

The feature selection algorithm described above is used in our experiment to obtain useful feature subsets. Among the 
total 13 features, the following 5 features are selected for the classification: Low Gray-Level Run Emphasis(LGRE), 
High Gray-Level Run Emphasis(HGRE), Run Percentage(RPC), mean and standard deviation. 

4.5 Classification 

4.5.1 Classification method 

A multi-layer perceptron (MLP), one of the commonly used neural network classifiers, is used for classification. MLP is 
a feedforward artificial neural network model, which is designed through iterative regression to minimize the mean 
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squared error (MSE) between the target class and a network mapping function.11 The three layer MLP (input-hidden-
output) is one of the universal approximators. In our experiment, we chose sigmoid and linear function as activation 
functions in hidden layer and output layer, respectively.  

An output Weights Optimization – Backpropagation (OWO-BP) algorithm with Output Reset (OR) was used to solve the 
MLP training. In the OWO-BP algorithm, linear equations are solved to find output weights and backpropagation is used 
to find hidden weights.12  Each instance of residual error contains at least two types of bias: an additive constant inherent 
to each output vector and a component due to difference between desired output and a correctly classified individual 
output value. The OR method we applied here adjusted the desired output to find the values of these two types of biases 
which minimize the training error.11,13 

Program for OWO-BP based MLP classifier is written in C. 

4.5.2 Cross validation 

One of the evaluation methods for classification systems is the k-fold cross validation. This approach randomly partitions 
the data set into k groups. Then, k-1 groups are combined as training data and the remaining group is used as testing 
data. This process is repeated k times such that each group is used for testing once. Finally, the k-group of testing results 
are used  to estimate the error rate.  

In our experiment, the number of cancerous data is especially small compared with the number of normal data(42 vs 
6280). To handle the unbalanced data set, we use a modified k-fold cross-validation method to evaluate the system. For 
the training data groups in the cross-validation, we only keep part of the patterns from the normal class to insure that the  
same number of patterns are included into training process from the two classes (normal and cancerous).   

From the total of 42 cancerous patterns and 6280 normal patterns, 3 groups of training data sets and 3 groups of testing 
data sets are generated correspondingly. Each training data has 28 patterns from cancerous class and 28 patterns from 
normal class, while each testing data has 14 and 2093 patterns from cancerous and normal class, respectively. 

4.6 System evaluation 

Accuracy is calculated for the classification results, which is defined as: ݕܿܽݎݑܿܿܣ ൌ 1 െ ݊௠௜௦ି௖௟௔௦௦௜௙௜௖௔௧௜௢௡݊௧௢௧௔௟ ௣௔௧௧௘௥௡௦  

 

In addition, the two most widely used statistics for describing diagnostic tests, sensitivity and specificity, are used to 
assess the success of the diagnostic results.14 ܵ݁݊ݕݐ݅ݒ݅ݐ݅ݏ ൌ  ௡೟ೝೠ೐ ೛೚ೞ೔೟೔ೡ೐௡೟ೝೠ೐ ೛೚ೞ೔೟೔ೡ೐ା௡೑ೌ೗ೞ೐ ೙೐೒೟೔ೡ೐   ,   ܵݕݐ݂݅ܿ݅݅ܿ݁݌ ൌ  ௡೟ೝೠ೐ ೙೐೒೟೔ೡ೐௡೟ೝೠ೐ ೙೐೒೟೔ೡ೐ା௡೑ೌ೗ೞ೐ ೛೚ೞ೔೟೔ೡ೐ 

 

where definitions of the four parameters above are  listed below: 

 Samples with disease 
(Cancerous) 

Samples without disease 
(Normal) 

Test is positive ntrue positive nfalse positive 

Test is negative nfalse negative ntrue negative 

Therefore, sensitivity and specificity give the probability of getting accurate diagnoses results among samples with 
disease and without disease, respectively.  
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5.3 Discussion for the wrong diagnosis 

Figure 3 is an illustration for the regions that were incorrectly diagnosed by this system. In this figure, gray points show 
the normal regions that were decided as cancerous, which means the 660 false-positive sub-regions; the four white points 
indicate the false-negative situations. Note that the 4 false-negative sub-regions are on the edge of the big cancerous area, 
where diagnosis mistakes are prone to happen.  

 
Fig. 3. Distribution of diagnostic error occurrence (gray points present data of false positive and write points present data of 

true negative) 

 

From table 3, it is observed that, compared with actual cancerous(true-positive) regions, the false-negative regions have 
much higher HGRE values and lower RPC and STD values. Also, RPC values are higher in false-positive regions than 
the average values of actual normal(true-negative) regions. These differences may cause the incorrect diagnosis results in 
these regions. 

Table 3. feature data of incorrect diagnosis regions 

Category LGRE HGRE RPC Mean STD 
True-positives 0.01 ± 0.01 85.39 ± 20.54 2.22 ± 0.41 8.01 ± 1.34 1.63 ± 0.63 
No.1 false-negative  0.008 122.260 1.225 10.045 0.577 
No.2 false-negative  0.009 110.160 1.210 9.577 0.565 
No.3 false-negative  0.010 106.490 1.585 9.395 1.141 
No.4 false-negative  0.009 106.860 1.337 9.370 0.741 
True-negatives 0.01 ± 0.00 108.24 ± 30.52 1.29 ± 0.31 9.40 ± 1.59 0.87 ± 0.63 
False-positives 0.01 ± 0.002 103.97 ± 21.28 1.541 ± 0.29 9.21 ± 1.21 0.99 ± 0.56 

 

6. CONCLUSION 
In this paper, a method for automatic prostate cancer diagnoses using machine learning was presented. Texture and 
intensity features were extracted from the histopathological image of prostate tissues which contain a cancerous area. 
Texture features of the tissue image were calculated by using the gray-level run-length matrix(GL-RLM) method. 
Among the popular eleven texture features, along with mean and standard deviation of the intensity information,  five of 
them were selected for classification, including LGRE, HGRE, RPC, mean and standard deviation. These five features 
were inputted into a multi-layer perceptron(MLP) classifier to determine if a sub-region is normal or cancerous.  

The average accuracy of the classification result was 89.5%. Overall sensitivity and specificity of this diagnosis system 
were 90.48% and 89.49%, respectively.  

The proposed system provided a feasible method for automatic diagnosis of prostate cancer. Tissue texture features were 
proved to give good results for the classification from the histopathological image.   
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