9 research outputs found

    Structural, Metabolic, and Functional Brain Abnormalities as a Result of Prenatal Exposure to Drugs of Abuse: Evidence from Neuroimaging

    Get PDF
    Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse

    Therapy resistant neonatal seizures, linear vesicular rash, and unusually early neuroradiological changes: incontinentia pigmenti : A case report, literature review and insight into pathogenesis

    Get PDF
    CASE PRESENTATION: A substance abusing G2P1 mother spontaneously delivered at term an appropriate for gestational age girl. Neonatal seizures appeared at 21 hours and empiric anticonvulsive and antimicrobial treatment was started. At 25 hours, first vesicles appeared. While routine evaluations remained normal, a head CT revealed multifocal ischemic injuries, and a later MRI showed multifocal petechiae and diffusion abnormalities in the corticospinal tracts. The clinical diagnosis of incontinentia pigmenti (stage 1) was secured by histopathology. Follow-up at 13 months showed global developmental delay. DISCUSSION: We discuss the unusually early bilateral, fronto-occipital corticomedullar ischemias (CT day 3). On the MR imaging (day 7) extensive symmetric cerebral corticomedullar destruction and diffusion sequences with corticospinal tracts abnormalities are seen, which then evolve (day 26) to extensive symmetric cerebral destruction. We review the literature, genetics, suspected pathophysiology and possible neonatal manifestation. CONCLUSION: Incontinentia pigmenti is rare and, therefore, diagnosis is frequently delayed. Nevertheless, in the setting of therapy refractory seizures, excluded infections, and linear vesicular rash, a high index of suspicion is needed. This is the first report of simultaneous corticomedullar involvement as early as the third day of life

    Neuroimaging of children following prenatal drug exposure

    No full text

    Herpes Viruses

    No full text
    corecore