66 research outputs found

    A Strategy for Teaching an Effective Undergraduate Mineralogy Course

    Get PDF
    An effective undergraduate mineralogy course provides students with a familiarity and understanding of minerals that is necessary for studying the Earth. This paper describes a strategy for integrating the disparate topics covered in a mineralogy course and for presenting them in a way that facilitates an understanding of mineralogy that enables students to apply it in subsequent courses and research. The course is organized into a well-integrated sequence of lectures, demonstrations and laboratory exercises that unfolds the material logically and at a pace that is responsive to the students’ needs. The course begins with six weeks on crystal chemistry, then five weeks covering analytical methods for characterizing minerals and ends with five weeks on the silicates. This order facilitates a progression of learning from the basic concepts to the more advanced and allows us to reinforce the concepts of crystal chemistry during the final section on the silicates. Optical mineralogy is almost entirely taught in the lab and is aided by use of a mineral identification chart developed to help students learn to identify minerals in thin section. Student performance is assessed through one technical paper and presentation as well as homework, essay exams and lab practicals. Educational levels: Graduate or professional

    Structural and compositional data for childrenite from the Homolka granite, Czech Republic

    Get PDF
    Members of the childrenite–eosphorite series, ideally (Fe1−xMnx)AlPO4(OH)2⋅H2O, from the highly evolved Homolka granite, in the southern Czech Republic, were characterized using a multi-analytical approach. They occur as anhedral grains, up to ∼0.2 mm in size, associated with quartz, muscovite, albite, and K-feldspar. Tiny inclusions of probable uraninite have been observed. Backscattered electron images reveal a patchy zoning of these members of the childrenite–eosphorite series, related to an uneven distribution of Fe and Mn. On the basis of electron microprobe analysis, the average composition of the studied material is (Fe0.68Mn0.28Ca0.03)Σ0.99Al0.96(P1.04Si0.01)Σ1.05O4.00(OH)2.09⋅0.91H2O, thus corresponding to childrenite. Unit-cell parameters of this species are a=6.9226(9), b=10.4081(13), c=13.3957(17) Å. Its crystal structure was refined in the space group Cmca down to R1=0.0295 on the basis of 602 unique reflections with Fo&gt;4σ(Fo) and 66 refined parameters. The crystal structure analysis agrees with the results of electron microprobe analysis and suggests that, in the studied material, Fe occurs in the divalent oxidation state only. Crystal structure data are also consistent with the Raman spectrum collected on the same grain that was structurally characterized, confirming the occurrence of PO4 groups only in childrenite.</p

    The Role of Th-U Minerals in Assessing the Performance of Nuclear Waste Forms

    Get PDF
    Materials designed for nuclear waste disposal include a range of ceramics, glass ceramics and glass waste forms. Those with crystalline phases have provided the momentum for studies of minerals as a means to understand aspects of waste-form crystal chemistry, behaviour in aqueous systems and radiation damage over geological periods of time. Although the utility of natural analogue studies varies, depending upon the degree of analogy to the proposed geological repository and other factors such as chemical composition, the available data suggest that Th-U host phases such as brannerite, monazite, pyrochlore, zircon and zirconolite are resistant generally to dissolution in aqueous fluids at low temperatures. Geochemical durability may or may not extend to hydrothermal systems depending on the specifics of fluid composition, temperature and pressure. At elevated temperatures, for example, davidite may break down to new phase assemblages including titanite, ilmenite and rutile. Perovskite is generally less resistant to dissolution at low temperatures and breaks down to TiO2, releasing A-site cations to the aqueous fluid. Studies of radiation damage indicate that the oxide and silicate phases become amorphous as a result of the gradual accumulation of alpha-recoil collision cascades. Monazite tends to remain crystalline on geological time scales, a very attractive property that potentially eliminates major changes in physical properties such as density and volume, thereby reducing the potential for cracking, which is a major concern for zircon. In spite of recent success in describing the behaviour of Th-U minerals in geological systems, considerable work remains in order to understand the P-T-X conditions during alteration and T-t history of the host rocks

    Retention of Actinides in Natural Pyrochlores and Zirconolites

    Get PDF
    Natural pyrochlore and zirconolite undergo a crystalline-aperi­odic transformation caused by alpha-decay of 232Th and 2380 at dose levels between 2 X 1014 and 3 X 1017 a/mg. The principal effects of the transformation are volume expansion and micro­fracturing, providing potential pathways for fluids. Geochemical alteration of the minerals may occur under hydrothermal conditions or in low temperature, near surface environments, but Th and U usually remain immobile and can be retained for time scales up to 109 years. However, the Th-U isotope systematics of a zirconolite-bearing vein and dolomite host rock may provide evidence for disequilibrium between 230Th, 234U and 238U

    Synthesis of zirconolite-2M ceramics for immobilisation of neptunium

    Get PDF
    Praseodymium-doped zirconolite ceramics targeting nominal composition Ca1-xPrxZrTi2-5x/3Al5x/3O7 (x ≤ 0.20, Δx = 0.05) were fabricated by a mixed oxide solid state reaction, at 1350 °C in air for 20 h. Praseodymium (Pr) was employed as a surrogate for neptunium (Np), with Al3+ co-accommodated to provide charge balance. High-resolution transmission electron microscopy and electron diffraction analyses confirmed that zirconolite crystallised as the 2 M monoclinic polytype throughout the phase evolution, with no evidence of transformation to other polytype structures. Phase assemblage and microstructural data were consistent with zirconolite occupying a high fraction of the phase assemblage (>ca. 93 wt %), alongside a minor secondary perovskite phase at all levels of targeted Pr incorporation. Despite this, it was demonstrated near theoretical density formed through a solid-state fabrication route, and we therefore propose that, through analogy with the corresponding Pr solid solution, zirconolite may be a suitable candidate for the immobilisation of Np-bearing wastes

    Molten salt synthesis of Ce doped zirconolite for the immobilisation of pyroprocessing wastes and separated plutonium

    Get PDF
    Molten salt mediated synthesis of zirconolite Ca0.9Zr0.9Ce0.2Ti2O7 was investigated, as a target ceramic matrix for the clean-up of waste molten salts from pyroprocessing of spent nuclear fuels and the immobilisation of separated plutonium. A systematic study of reaction variables, including, reaction temperature, time, atmosphere, reagents and composition, was made to optimise the yield of the target zirconolite phase. Zirconolite 2 M and 3T polytypes were formed as the major phase (with minor perovskite) between 1000 – 1400 °C, in air, with the relative proportion of 2 M polytype increasing with temperature. Synthesis under 5% H2/N2 or Ar increased the proportion of minor perovskite phase and reduced the yield of the zirconolite phase. The yield of zirconolite polytypes was maximised with the addition of 10 wt% TiO2 and 5 wt% TiO2, yielding 91.7 ± 2.0 wt% zirconolite, primarily as the 2 M polytype, after reaction at 1200 °C for 2 h, in air. The particle size and morphology of the zirconolite product bears a close resemblance to that of the TiO2 precursor, demonstrating a dominant template growth mechanism. Although the molten salt mediated synthesis of zirconolite is effective at lower reaction temperature and time, compared to reactive sintering, this investigation has demonstrated that the approach does not offer any clear advantage with over conventional reactive sintering for the envisaged application
    • …
    corecore