103 research outputs found

    High-Pressure-Sintering-Induced Microstructural Engineering for an Ultimate Phonon Scattering of Thermoelectric Half-Heusler Compounds

    Get PDF
    Thermal management is of vital importance in various modern technologies such as portable electronics, photovoltaics, and thermoelectric devices. Impeding phonon transport remains one of the most challenging tasks for improving the thermoelectric performance of certain materials such as half-Heusler compounds. Herein, a significant reduction of lattice thermal conductivity (ĪŗL) is achieved by applying a pressure of ā‰ˆ1 GPa to sinter a broad range of half-Heusler compounds. Contrasting with the common sintering pressure of less than 100 MPa, the gigapascal-level pressure enables densification at a lower temperature, thus greatly modifying the structural characteristics for an intensified phonon scattering. A maximum ĪŗL reduction of ā‰ˆ83% is realized for HfCoSb from 14 to 2.5 W māˆ’1 Kāˆ’1 at 300 K with more than 95% relative density. The realized low ĪŗL originates from a remarkable grain-size refinement to below 100 nm together with the abundant in-grain defects, as determined by microscopy investigations. This work uncovers the phonon transport properties of half-Heusler compounds under unconventional microstructures, thus showing the potential of high-pressure compaction in advancing the performance of thermoelectric materials

    Device Optimization of Tris-Aluminum (Alq3) Based Bilayer Organic Light Emitting Diode Structures

    Get PDF
    In this work we present detailed analysis of the emitted radiation spectrum from tris(8-hydroxyquinoline) aluminum (Alq3) based bilayer OLEDs as a function of: the choice of cathode, the thickness of organic layers, and the position of the hole transport layer/Alq3 interface. The calculations fully take into account dispersion in the glass substrate, the indium tin oxide anode, and in the organic layers, as well as the dispersion in the metal cathode. Influence of the incoherent transparent substrate (1 mm glass substrate) is also fully accounted for. Four cathode structures have been considered: Mg/Ag, Ca/Ag, LiF/Al, and Ag. For the hole transport layer, N,N'-diphenyl-N,N'-(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) and N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) were considered. As expected, emitted radiation is strongly dependent on the position of the emissive layer inside the cavity and its distance from the metal cathode. Although our optical model for an OLED does not explicitly include exciton quenching in vicinity of the metal cathode, designs placing the emissive layer near the cathode are excluded to avoid unrealistic results. Guidelines for designing devices with optimum emission efficiency are presented. Finally, several different devices were fabricated and characterized and experimental and calculated emission spectra were compared

    Performance of a fast fiber based UV/Vis multiwavelength detector for the analytical ultracentrifuge

    Get PDF
    The optical setup and the performance of a prototype UV/Vis multiwavelength analytical ultracentrifuge (MWL-AUC) is described and compared to the commercially available Optima XL-A from Beckman Coulter. Slight modifications have been made to the optical path of the MWL-AUC. With respect to wavelength accuracy and radial resolution, the new MWL-AUC is found to be comparable to the existing XL-A. Absorbance accuracy is dependent on the light intensity available at the detection wavelength as well as the intrinsic noise of the data. Measurements from single flashes of light are more noisy for the MWL-AUC, potentially due to the absence of flash-to-flash normalization in the current design. However, the possibility of both wavelength and scan averaging can compensate for this and still give much faster scan rates than the XL-A. Some further improvements of the existing design are suggested based on these findings

    Predicted risks of radiogenic cardiac toxicity in two pediatric patients undergoing photon or proton radiotherapy

    Get PDF
    BACKGROUND: Hodgkin disease (HD) and medulloblastoma (MB) are common malignancies found in children and young adults, and radiotherapy is part of the standard treatment. It was reported that these patients who received radiation therapy have an increased risk of cardiovascular late effects. We compared the predicted risk of developing radiogenic cardiac toxicity after photon versus proton radiotherapies for a pediatric patient with HD and a pediatric patient with MB. METHODS: In the treatment plans, each patientā€™s heart was contoured in fine detail, including substructures of the pericardium and myocardium. Risk calculations took into account both therapeutic and stray radiation doses. We calculated the relative risk (RR) of cardiac toxicity using a linear risk model and the normal tissue complication probability (NTCP) values using relative seriality and Lyman models. Uncertainty analyses were also performed. RESULTS: The RR values of cardiac toxicity for the HD patient were 7.27 (proton) and 8.37 (photon), respectively; the RR values for the MB patient were 1.28 (proton) and 8.39 (photon), respectively. The predicted NTCP values for the HD patient were 2.17% (proton) and 2.67% (photon) for the myocardium, and were 2.11% (proton) and 1.92% (photon) for the whole heart. The predicted ratios of NTCP values (proton/photon) for the MB patient were much less than unity. Uncertainty analyses revealed that the predicted ratio of risk between proton and photon therapies was sensitive to uncertainties in the NTCP model parameters and the mean radiation weighting factor for neutrons, but was not sensitive to heart structure contours. The qualitative findings of the study were not sensitive to uncertainties in these factors. CONCLUSIONS: We conclude that proton and photon radiotherapies confer similar predicted risks of cardiac toxicity for the HD patient in this study, and that proton therapy reduced the predicted risk for the MB patient in this study

    A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations

    Full text link
    An essential component in proton radiotherapy is the algorithm to calculate the radiation dose to be delivered to the patient. The most common dose algorithms are fast but they are approximate analytical approaches. However their level of accuracy is not always satisfactory, especially for heterogeneous anatomic areas, like the thorax. Monte Carlo techniques provide superior accuracy, however, they often require large computation resources, which render them impractical for routine clinical use. Track-repeating algorithms, for example the Fast Dose Calculator, have shown promise for achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose calculations in a fraction of the computation time. We report on the implementation of the Fast Dose Calculator for proton radiotherapy on a card equipped with graphics processor units (GPU) rather than a central processing unit architecture. This implementation reproduces the full Monte Carlo and CPU-based track-repeating dose calculations within 2%, while achieving a statistical uncertainty of 2% in less than one minute utilizing one single GPU card, which should allow real-time accurate dose calculations

    The discovery of Hepatocyte Growth Factor (HGF) and its significance for cell biology, life sciences and clinical medicine

    Get PDF
    It has been more than 25 years since HGF was discovered as a mitogen of hepatocytes. HGF is produced by stromal cells, and stimulates epithelial cell proliferation, motility, morphogenesis and angiogenesis in various organs via tyrosine phosphorylation of its receptor, c-Met. In fetal stages, HGF-neutralization, or c-Met gene destruction, leads to hypoplasia of many organs, indicating that HGF signals are essential for organ development. Endogenous HGF is required for self-repair of injured livers, kidneys, lungs and so on. In addition, HGF exerts protective effects on epithelial and non-epithelial organs (including the heart and brain) via anti-apoptotic and anti-inflammatory signals. During organ diseases, plasma HGF levels significantly increased, while anti-HGF antibody infusion accelerated tissue destruction in rodents. Thus, endogenous HGF is required for minimization of diseases, while insufficient production of HGF leads to organ failure. This is the reason why HGF supplementation produces therapeutic outcomes under pathological conditions. Moreover, emerging studies delineated key roles of HGF during tumor metastasis, while HGF-antagonism leads to anti-tumor outcomes. Taken together, HGF-based molecules, including HGF-variants, HGF-fragments and c-Met-binders are available as regenerative or anti-tumor drugs. Molecular analysis of the HGF-c-Met system could provide bridges between basic biology and clinical medicine

    Novel in situ cell for Raman diagnostics of lithium-ion batteries

    Get PDF
    A novel in situ cell for Raman diagnostics of working lithium-ion batteries is described. The design closely mimics that of standard battery testing cells and therefore allows to obtain Raman spectra under representative electrochemical conditions. Both cathode and anode materials can be studied. First results on the intercalation of a Liā‚ā‚‹ā‚“CoOā‚‚ cathode material demonstrate the potential of the experimental approach for structural studies and underline the importance of studying lithium-ion batteries at work
    • ā€¦
    corecore