104 research outputs found

    MXenes and the progress of Li–S battery development - a perspective

    Get PDF
    Lithium–sulfur (Li–S) battery has attracted tremendous interest owing to its high energy density at affordable costs. However, the irreversible active material loss and subsequent capacity fading caused by the uncontrollable shuttling of polysulfides have greatly hampered its commercial viability. MXenes, a novel class of 2D materials derived from nano-layered MAX phases, have been shown the potential to push the development of sulfur-based batteries to a next level owing to their high conductivity, strong polysulfide affinity and electrocatalytic properties. This perspective article focuses on the possible implications that MXene-based materials will have in the development of advanced sulfur-based batteries and their potential application in different upcoming technologies. In four sections possible developments are outlined which can be reached in the next 10 years, that enable a highly reliable, minimized Li–S battery finally combined with energy harvesters to fabricate autonomous power supplies for the next generation of microscaled devices like meteorological or geotechnical probes, wearable (medical) sensors or other suitable mobile devices. Finally, a flowchart illustrates the possible way to realize some important milestones for the certain possible steps with significant contributions of MXenes

    MXenes and the progress of Li-S battery development-a perspective

    Get PDF
    Lithium–sulfur (Li–S) battery has attracted tremendous interest owing to its high energy density at affordable costs. However, the irreversible active material loss and subsequent capacity fading caused by the uncontrollable shuttling of polysulfides have greatly hampered its commercial viability. MXenes, a novel class of 2D materials derived from nano-layered MAX phases, have been shown the potential to push the development of sulfur-based batteries to a next level owing to their high conductivity, strong polysulfide affinity and electrocatalytic properties. This perspective article focuses on the possible implications that MXene-based materials will have in the development of advanced sulfur-based batteries and their potential application in different upcoming technologies. In four sections possible developments are outlined which can be reached in the next 10 years, that enable a highly reliable, minimized Li–S battery finally combined with energy harvesters to fabricate autonomous power supplies for the next generation of microscaled devices like meteorological or geotechnical probes, wearable (medical) sensors or other suitable mobile devices. Finally, a flowchart illustrates the possible way to realize some important milestones for the certain possible steps with significant contributions of MXenes.Fil: Balach, Juan Manuel. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados; ArgentinaFil: Giebeler, Lars. Leibniz Institute for Solid State and Materials Research; Alemani

    Electrodeposition of manganese layers from sustainable sulfate based electrolytes

    Get PDF
    Functional manganese-(Mn)-containing layers are becoming increasingly important in the fields of sacrificial corrosion protection, biodegradable medical devices or electrochemical energy conversion systems. Electrodeposition can be a low cost and time-efficient production route, but the very electronegative nature of Mn makes this reduction process quite challenging. In this paper, electrolytic potentiostatic deposition of metallic Mn layers from environmentally friendly aqueous manganese sulfate electrolytes with pH 3 is successfully demonstrated. A continuous electrolyte flow in the cathodic compartment of the electrochemical cell for controlling the pH value during deposition was found to be essential for achieving good layer qualities. Based on cyclic voltammetry analysis in combination with quartz crystal microbalance measurements a suitable deposition potential range was identified. The obtained electrodeposited layers were characterized by means of SEM, XRD, GD-OES and XPS. The shift of the deposition potential from − 2.4 VMSE to − 2.6 VMSE (deposition time 60 min) yields a thickness increase of the metallic α-Mn deposits from < 500 nm to ~ 2 ÎŒm. Only thin additional surface regions of Mn-oxides/-hydroxides were identified. The important role of (NH4)2SO4 as complex-forming electrolyte additive is discussed and an impact of the salt concentration on the deposit properties is revealed. This is a promising starting point for further Mn alloy deposition analysis

    SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: The role of electrode preparation, FEC addition and binders

    Get PDF
    Silicon is a promising negative electrode for secondary lithium-based batteries, but the electrochemical reversibility of particularly nanostructured silicon electrodes drastically depends on their interfacial characteristics, commonly known as the solid electrolyte interface (SEI). The beneficial origin of certain electrolyte additives or different binders is still discussed controversially owing to the challenging peculiarities of interfacial post-mortem investigations of electrodes. In this work, we address the common difficulties of SEI investigations of porous silicon/carbon nanostructures and study the addition of a fluoroethylene carbonate (FEC) as a stabilizing additive as well as the use of two different binders, carboxymethyl cellulose/styrene-butadiene rubber (CMC/SBR) and polyacrylic acid (PAA), for the SEI formation. The electrode is composed of silicon nanocrystallites below 5 nm diameter allowing a detailed investigation of interfacial characteristics of silicon owing to the high surface area. We first performed galvanostatic long-term cycling (400 times) and carried out comprehensive ex situ characterization of the cycled nanocrystalline silicon electrodes with XRD, EDXS, TEM and XPS. We modified the preparation of the electrode for post-mortem characterization to distinguish between electrolyte components and the actual SEI. The impact of the FEC additive and two different binders on the interfacial layer is studied and the occurrence of diverse compounds, in particular LiF, Li2O and phosphates, is discussed. These results help to understand general issues in SEI formation and to pave the way for the development of advanced electrolytes allowing for a long-term performance of nanostructured Si-based electrodes

    A top-down approach to build Li2S@rGO cathode composites for high-loading lithium–sulfur batteries in carbonate-based electrolyte

    Get PDF
    With a notable advantage in terms of specific capacity (1166 mAh g−1), lithium disulfide (Li2S) has been considered a promising cathode material for high-energy-density lithium–sulfur (Li–S) batteries. In contrast to pure sulfur, Li2S opens the opportunity to implement alternative anodes such as silicon or graphite instead of hardly controllable lithium metal. However, its intrinsically low conductivity and the formation of soluble lithium polysulfide species during cell operation resulting in a poor cycling stability, especially in carbonate-based electrolytes. Herein, a reduced graphene oxide-wrapped Li2S particles (Li2S@rGO) electrode is presented for improving the electrochemical performance of Li–S batteries in carbonate-based electrolytes. A hydrothermally prepared rGO-covered MoS2 particles composite was fully lithiated and irreversible decomposed at 0.01 V vs. Li/Li+ to in situ produce a Li2S@rGO composite with a high Li2S loading of ≈5 mg cm−2. Despite operating Li–S cells in a conventional carbonate-based electrolyte, the resulting cathode exhibits high initial capacity (975 mAh gLi2S −1 and 1401 mAh gS −1 at 0.1 C), low degradation rate (0.18% per cycle after 200 cycles at 2 C) and excellent Coulombic efficiency (≈99.5%). This work provides a simple strategy to fabricate practical high-loading Li2S cathodes for high-performance Li–S batteries “free” of polysulfide shuttle phenomenon.Fil: Zensich, Maximiliano Andres. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados; ArgentinaFil: Jaumann, Tony. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Morales, Gustavo Marcelo. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados; ArgentinaFil: Giebeler, Lars. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Barbero, CĂ©sar Alfredo. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados; ArgentinaFil: Balach, Juan Manuel. Universidad Nacional de RĂ­o Cuarto. Facultad de Ciencias Exactas FisicoquĂ­micas y Naturales. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados. - Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en TecnologĂ­as EnergĂ©ticas y Materiales Avanzados; Argentin

    Face Centred Cubic Multi-Component Equiatomic Solid Solutions in the Au-Cu-Ni-Pd-Pt System

    Get PDF
    A single-phase solid solution is observed in quaternary and quinary alloys obtained from gold, copper, nickel, palladium and platinum. The lattice parameters of the alloys follow the linear rule of mixture when considering the lattice parameters of the elements and their concentration. The elements are a priori not homogeneously distributed within the respective alloys resulting in segregations. These segregations cause a large broadening of X-ray lines, which is accessed in the present article. This correlation is visualized by the help of local element mappings utilizing scanning electron microscopy including energy dispersive X-ray analysis and their quantitative analysis
    • 

    corecore