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A B S T R A C T   

Rechargeable lithium-ion batteries (LIBs) are one of the most promising alternatives to effectively bypass fossil 
fuels. However, long-term energy application of LIBs could be restricted in the future due to the increased 
production cost of LIB arising from the shortage and inaccessibility of Li in the Earth’s crust. Na or K have been 
considered as substitutes for Li but in spite of their natural abundance, they suffer from low gravimetric/volu-
metric energy density. An alternative to increase the efficiency of sodium-ion battery (SIBs) and potassium-ion 
battery (KIBs) is to focus on finding the high-performing negative electrode, the anode. The large volume changes 
of alloying and conversion type anodes for KIBs and SIBs make hard carbons to a better option on this regard than 
usual graphitic carbons, but a key obstacle is the reliance on unsustainable sources. Thus, biomass-derived 
carbon could offer a promising alternative, and it has indeed been in the focus of much recent work. This re-
view highlights the recent advances in using carbon extracted from various biomass sources in rechargeable Li-, 
Na-, and K-ion batteries. Maximizing the energy and power densities as well as the lifetime of carbon anodes 
require an exploration of the right balance between carbon structures, pore morphology, chemical composition 
and alkali metal-ion storage. Thus, in this review, first, we take stock of key challenges and opportunities to 
extract carbon from various plants structural components and identify the extracted carbon structure compared 
to graphite-like structure. Then, we provide an overview on morphological and structural modification of the 
extracted carbons. Finally, we show how the physicochemical properties, structural alignment and morpho-
logical variation of the biomass-derived carbon can affect the storage mechanism and electrochemical perfor-
mance. The extensive overview of this topic provided here is expected to stimulate further work on 
environmentally friendly battery design and towards the optimization of the battery performance. Electrode 
materials in alkali-metal-ion batteries that are based on biomass-derived carbon may allow not only a technical 
breakthrough, but also an ethically and socially acceptable product.   

1. Introduction 

Modern societies rely on exhaustible and unequally distributed fossil 
fuels to satisfy the high demand for electrical energy. But this reliance is 
associated with a high cost – anthropogenic global warming [1,2] – 
which has triggered the search for cleaner and more sustainable energy 
sources [3–9]. Rechargeable LIBs are one of the most promising alter-
natives in this regard. Their high energy and power densities make such 
batteries amenable for diverse applications, from portable electronic 
devices to medium- and large-scale systems in the automotive industry 
to grid support [1]. However, the application of LIBs is limited by some 
barriers such as safety considerations, uniformity of Li in Earth’s crust, 
durability, and specially by the fabrication costs [1,10]. The costs of LIB 

production could be cut by considering alternative raw materials, opti-
mizing manufacturing schemes, reducing inactive material in the bat-
tery, and replacing expensive materials, such as rare-metal-containing 
inorganic compounds in electrodes and expensive polymers used as 
separators [11]. Furthermore, cheaper and sustainable raw materials 
can be refined to substitute for classical battery components. In that 
context, rechargeable sodium-ion batteries (SIBs) could replace LIBs, 
especially in large-scale storage devices, because Na is relatively cheaper 
and more abundant than Li. However, Na introduces some limitations 
because of its: 1) greater molecular weight and ionic radius than Li, 2) 
weaker binding to graphite as compared with Li, 3) higher standard 
reduction potential (-2.71 V vs. standard hydrogen electrode (SHE)), as 
compared with ~ -3.04 V for Li, and 4) lower gravimetric capacity (1165 
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mAh/g as compared with 3829 mAh/g for Li) [12]. Potassium (K) is 
another alternative for Li, and is used in potassium-ion batteries (KIBs). 
K is abundant in the Earth’s crust (and thus relatively cheap) and has a 
low standard reduction potential (-2.93 V). It also has a high electrical 
conductivity, high rate of electron transfer between intercalated K atoms 
and the graphite layer, and fast ion-transportation kinetic in electrolyte 
as compared with Na cations [13,14]. Nevertheless, K also has some 
limitations that hinder its effective use in a technically relevant appli-
cation. These include: i) poor ion diffusivity in the solid electrode, ii) 
large graphite volume change during cycling (~ 61%), iii) severe con-
sumption of electrolyte given the low electrochemical potential of K+/K 
in propylene carbonate, iv) persistent tendency to deposit in dendritic 
form, and v) limited energy and power density because of its high atomic 
mass [15,16]. 

Another possibility is to focus on the negative electrode, or anode, in 
batteries. Typically, graphite is the most widely used form of carbon that 
forms anodes in batteries: it is able to react reversibly with Li with a 
theoretical specific capacity of 372 mAh/g vs. Li+/Li. Highly crystalline 
graphite can host up to one Li atom per six C atoms. The low theoretical 
specific capacity can originate from the Coulomb repulsion between Li 
ions in nearest-neighbor sites. Because this is larger than the binding 
energy of Li to the graphite, nearest-neighbor sites cannot be occupied 
by Li [17,18]. Therefore, researchers were motivated to use hard carbon 
(non-graphitizable carbon) with capacities larger than that of graphite. 
Hard carbons show better electrochemical performance than that of 
graphite because of their relatively good cyclability, morphology that is 
tailorable to the initial organic precursors and processing temperature, 
and their ability to accommodate a much higher amount of Li than 
graphite. The latter can be attributed to the presence of hydrogen (H) 
and a large fraction of single graphene sheets, which allow the adsorp-
tion of a large amount of Li on both sides of the single-layer sheets [19]. 
In addition, the poorly or non-graphitizable carbons, owing to their 
large interlayer distance (d002-spacing) and high porosities, can resolve 
the intercalation and extraction of Na+ and K+ ions to an extent [20]. 

A sustainable yet cost-effective alternative is to use biomass-derived 
materials obtained via low-cost chemical processes in the anode. 
Biomass includes agricultural residues and animal or wood wastes. 
Based on the nature of the biomass, the pyrolysis temperature and pre- 
or post-processing procedures can be optimized to fabricate high- 
quality, porous carbonaceous materials with channels and interstitial 
sites. In point of fact, biomass materials make it possible to avoid using 
expensive templates and, in most cases, environmentally harmful post- 
removal process. For example, the pyrolysis of residues from pulp- 
paper production and the influence of functional groups and molecu-
lar subunits in the polymeric structure is roughly described to show their 
amazing and porosity-directing influence. During pyrolysis, oxygen 
from the functional groups in cellulosic and hemicellulosic biomass 
transforms easily into H2O, CO and CO2 and enables an easier activation 
and generation of micropores. By contrast, the aromatic subunits in 
lignin conduct to form nonporous carbon despite the presence of 
oxygen-containing groups, because these are less effective in pore cre-
ation [21,22]. The dimensions of these porous systems ranging from 
macro- to meso- to micropore can be tuned to enable a particular design 
to be used in practical application. Therefore, extensive efforts have 
been undertaken to make this process a low-cost, high-volume, and 
commercially sustainable one. However, the distinct structure and 
different reactivity of hemicellulose, cellulose, and lignin to temperature 
result in different decomposition rates during the pyrolysis process, 
which makes the study of their carbonization mechanism rather chal-
lenging [21,23,24]. 

The physical and chemical characteristics of biomass-derived car-
bons, such as (hierarchical) porosities, crystallinity, and morphology, 
directly affect their electrochemical performance. Therefore, the opti-
mization of processing parameters such as pyrolysis temperature, acid or 
base treatment, reaction time, and doping elements considerably affect 
the efficiency of the electrode and, hence, that of the eventual battery. 

However, the industrialization of biomass-based hard carbon produc-
tion faces some obstacles. These include the low initial Coulombic effi-
ciencies of hard carbons used in batteries, resulting from an over- 
proportionated formation of the solid-electrolyte interphase (SEI); low 
carbon yield of the biomass precursors; and their chemical diversity. 
Therefore, by knowing better the biomass structure and its composition, 
surface modification of extracted carbon by eliminating adsorbed mol-
ecules and oxygenated groups bonded to the carbon and optimization of 
electrolytes as well as understanding of the structure and function of the 
SEI in alkaline ion batteries, we help to facilitate the industrialization of 
the biomass anodes into batteries system. 

Here, we review recent advances in understanding the intercalation 
behavior of the metal cations Li+, Na+, and K+ in graphite and the po-
tential of biomass-derived carbons as anode materials. Although, the 
behavior of metal-ion storage differs based on the biomass used, the 
good performance of biomass-derived carbon with expanded graphite 
demonstrates its potential applicability as electrode material. The re-
view will explore how the structure, porosity, and surface chemistry of 
the biomass-derived hard carbon can be tailored by simple synthesis 
methods to enable metal-ion storage. It will also explore how single- and 
multi-element doping of N, P, B, and F could enhance the performance of 
the produced carbon as anode material. 

2. Structural forms of carbon 

Carbon shows unique versatility of its bonding chemistry among the 
elements. Free carbon atoms have the valence configuration of 2s2 2p2. 
These four valence electrons can be hybridized in three configurations of 
sp1, sp2 and sp3. The ability to hybridize s- and p-orbitals results in 
various types of chemical bonds that eventually lead to the formation of 
various crystalline and disordered structures. In the sp3-configuration, 
the coordination of the four hybrid orbitals toward the four corners of a 
regular tetrahedron leads to the formation of a strong σ bond with an 
adjacent atom. In the sp2 configuration, three sp2-orbitals are occupied 
by three electrons, each pointing to one of the vertices of a triangle and 
forming σ bonds, whereas the fourth electron is located in the pz orbital 
that is perpendicular to the plane of the σ bonds [25–27]. 

The two most common natural crystalline forms of carbon, graphite 
and diamond, exhibit dramatic differences as a result primarily of short- 
range order [28]. 

Diamond-like structures possess a covalently bonded face-centered 
cubic structure, which consists of fully saturated sp3-bonded carbon 
atoms with a density of 3.515 g/cm3. By contrast, graphite, with a 
density of 2.267 g/cm3, consists of covalently-bonded atoms in a hex-
agonal structure of sp2-sites bound together by weak Van-der-Waals 
forces provided by π orbitals. Due to the high surface area of graphene 
layers and π-π interactions between them, the stacking these layers is 
unavoidable. This stacking results in a low surface area of graphene with 
a poor energy-storage performance [29]. Therefore, some spacers such 
as metal oxides [30], conducting polymers [31], carbon black [32], or 
carbon nanotubes (CNTs) [33] are introduced into the interlayer spaces. 

Graphite occurs naturally, is mined and subsequently purified via 
hydrofluoric acid, but its reserves are limited. It can also be produced 
artificially by coking natural pitches or residues of crude-oil distillation 
by heating in the absence of air. The coke obtained after this long and 
complex process is calcined and extruded or molded to form rough 
blocks of the desired shape. After the density of the blocks has been 
adjusted by reimpregnation and several baking processes, the material is 
converted to graphite at around 3000◦C by passing a current through a 
conducting coke bed surrounding the blocks. The need for high-energy 
heat treatment means that synthetic graphite for use as anode material 
is currently twice as expensive as treated natural graphite [34]. Bat-
tery-grade graphite used in lithium-ion anodes is typically a mixture of 
synthetic and natural graphite [35]. 

Unlike crystalline carbon or highly ordered graphite, which is 
formed by ABAB-stacked graphene, the turbostratic carbon with 
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disordered multilayered graphene domains co-exists with various pro-
portions of sp2- and sp3-hybridization. In this kind of carbon, the pres-
ence of strong crosslinks between the disoriented and few layered 
graphene domains inhibits the rearrangement of the disoriented layers 
into a more parallel structure [25–27], [36,37]. Glassy and pyrolytic 
carbons obtained from organic polymer and hydrocarbon gas, respec-
tively, are two examples of turbostratic carbons [38]. Carbon quantum 
dots (CQDs) of less than 10 nm in size and graphene quantum dots 
(GQDs) with structures smaller than 100 nm in size and less than 10 
layers thick [39,40] are also classified into this category. CQDs are 
composed of turbostratic carbon and a nanocrystalline core with 
sp2-hybridized carbon while GQDs with similar structures compared to 
CQDs have higher crystallinity [41,42]. Extracted carbon from agricul-
tural biomass with disordered structure is also considered in the family 
of turbostratic carbons. Biomass as the less expensive source of carbon 
compared to polymer and hydrocarbon gas, plays the leading role for 
production of disorder carbons. However, due to complex structure of 
biomass, a deep understanding of its structural and chemical charac-
teristics is required to optimize extraction process of disordered carbon 
with high carbon content and optimum porosity. 

2.1. Biomass-derived carbon 

Biomass, the oldest renewable source of stored energy according to 
its biological diversity, source and origin, is classified into four cate-
gories: wood, crops, seaweed, and animal wastes. All types of biomass 
receive their energy, directly or indirectly, from photosynthesis, during 
which plants convert sunlight, water, and CO2 to oxygen and carbohy-
drates. Subsequently, the consumption of carbohydrates as food by an-
imals and humans provide them with nourishment [43]. Biomass 
contains a type of turbostratic carbon that can be obtained in a cheaper 
and environmentally more friendly way than carbon extracted from 
fossil sources [44]. In addition, extracting carbon from biomass is 
cheaper than extracting it from rare-metal-bearing inorganic com-
pounds, and has thus received greater attention in recent years [45]. 
Such hard carbon with a disordered microstructure can accommodate 
substantial amounts of Na and K ions between its enlarged interlayers, 
and it can thus function as highly efficient anode material. This section 
provides a detailed information of the structure of biomass and the py-
rolytic behavior of each main component of biomass as carbon sources. 

2.2. Biomass structure 

Cell walls of plants are composed of essentially three organic 

compounds: cellulose, hemicellulose, and lignin (Fig. 1). Each com-
pound has its own characteristics. Hemicellulose and lignin show only 
short-range ordering, whereas cellulose is crystalline. The proportion of 
these compounds change with species, the plant part they belong to, the 
nature of the cells, and the geographic location [46,47]. 

Since each species has different proportions of compounds and each 
compound possesses an individual amount of carbon, the total carbon 
content varies for various biomass. In woody plants, organs with higher 
lignin content (e.g. stems) tend to have a higher carbon content than 
organs with lower lignin content (e.g., leaves, roots, and reproductive 
organs). Also, in herbaceous plants, more carbon content is found in 
leaves than in stems and roots [49]. The carbon content in each plant 
organ also depends on the age of the plant [50]. In general, woody 
plants, because of their relatively low growth rate, exhibit higher carbon 
content than herbaceous plants. On average, dried biochar from wood 
and wood-agricultural residue contain 52 wt.% carbon, whereas her-
baceous and agricultural biomass contain 49 wt.% carbon. However, 
among the sources of agricultural biomass, some materials with the 
higher biochar yields content than that in woody plants, such as walnut 
shells, olive husk, and coconut shells containing 55, 58, and 51 wt.% 
carbon respectively exist [51,52]. 

Biomass with varying contents of hemicellulose, cellulose, and lignin 
can be thermally decomposed using different process parameters to 
tailor surface chemistry, structure, total carbon content, and pore 
morphology of the resulting carbon. 

Despite the higher C/O ratio of lignin as compared with the other 
components, biomass-derived carbon with higher cellulose content 
shows greater potential for porosity formation but not necessarily be-
haves proportional. The porosity of char due to evaporating compounds 
is governed by the crystallinity, morphology, and functional groups of 
cellulose [49,53–56]. Following example shall demonstrate the influ-
ence of a nearly similar cellulose content on specific surface area of the 
extracted carbon. Cotton seed hair and paper with a cellulose content of 
80-95 % and 85-99 % could be considered as a desirable source for 
fabricating porous carbon materials with high specific surface areas of 
2573 and 3524 m2/g, respectively [57,58]. 

The thermal decomposition of lignin is slower over a broader tem-
perature range (200-500◦C) than that of cellulose and hemicellulose. 
Cellulose decomposes between 200-400◦C, whereas hemicellulose de-
composes in the 200-320◦C range. Regarding to higher oxygen to carbon 
content of cellulose and its high polymeric degree compared to lignin, it 
tends to be decomposed as H2O, CO2, and CO at lower temperature. 
Interestingly, the total carbon content does not linearly correlate with 
the amount of cellulose in plants [21,23,59]. The treatment temperature 

Fig. 1. Structure of lignocellulosic biomass with cellulose: Linear large polymeric molecules, lignin: a complex and highly cross-linked aromatic polymer and 
hemicellulose: amorphous and highly branched macromolecular structure. Adapted from [48] after the required permission. 
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higher than 600◦C may result in a complete decomposition of lignin and 
the collapse of the structure. Nevertheless, the thermal treatment of 
biomass at 600◦C could guarantee complete carbonization of the cellu-
losic components while preserving parts of the aromatic building units 
[60]. However, the commonly found elements as K, Na, Mg and Ca in 
biomass by accelerating the degradation of the polymeric structure of 
cellulose and lignin, result the formation of lower molecular weight 
compounds. In order to increase char yield, rapid removal of char from 
the pyrolysis reactor is essential [61]. 

Pyrolysis of biomass at a low temperature with a low heating rate but 
a high inert gas flow rate is expected to give a maximum yield of biochar 
that is highly enriched in carbon [62]. Fast pyrolysis at moderate py-
rolysis temperature of 400-600◦C increases the yield of bio-oil. How-
ever, the biomass composition is the main influence on the char yield of 
the final carbon. For example, the char yield has been calculated to be 
13.2 and 34.4 wt.% for wheat straw and coir, respectively [63]. In 
addition, walnut shells show fast charring speeds, high char yield of 51.3 
wt.%, and an abundant porosity [64]. 

Besides the conventional pyrolysis processes, molten salts Li2CO3, 
KCl, Na2CO3, ZnCl2, K2CO3 etc. due to their high heat transfer, high 
thermal stability and catalyst characteristics in the conversion process, 
represent a new possibility to produce charred materials. In this process, 
thermal decomposition of organic components in biomass is carried out 
in a molten salt bath. The higher heating rate in this process increases 
the possibility of obtaining less char yield and more tar fraction (py-
rolysis oil). This reduction of char yield is mainly attributed to the 
further production of C-H and C-O bonds and the aromatization of the 
carbon by the molten salts during pyrolysis [65–67]. Each salt has own 
catalytic effect that has a significant influence on the yield of products 
after the conversion process. Different metal ions promote different 
pyrolysis reactions. For example, potassium and sodium ions increase 
the char yield, while it is only slightly affected by calcium ions for the 
pyrolysis of wood. However, other additives such as chlorides, nitrates, 
and sulfates accelerate levoglucosan generation and, therefore, decrease 
the amount of the obtained char [68]. In addition, the salt itself has an 
influence on the specific surface area of the carbon. For example, peanut 
shells carbonized in a Li2CO3/K2CO3 mixture have a higher specific 
surface area than those treated in LiCO3/Na2CO3/K2CO3, CaCl2, or 
CaCl2/NaCl [65]. Shang et al. [69] also prepared a porous carbon from 
peanut shells by carbonization in a ZnCl2 molten salt with a SBET of 1642 
m2/g compared to the conventional oven-driven pyrolysis with SBET =

95.51 m2/g. 
The temperature of the molten salts also affects the char yield. For 

example, the char yield, bio-oil and -gas products from cellulose pyrol-
ysis in ZnCl2-KCl at 410 ◦C under N2 flow were estimated to 38%, 48%, 
and 14%, respectively [70]. With increasing the temperature to 520◦C, 
the bio-oil and -gas yields increased indicating a de-polymerization of 
cellulose. The pyrolysis to the oil fraction was the dominant reaction at 
this higher pyrolysis temperature. He et al. [71] reported on lignite 
brown coal chars obtained with and without molten carbonate salt 
(Li2CO3-Na2CO3-K2CO3) at 800 ◦C. The char obtained with the molten 
salt showed a lower char yield of 43% and higher d002 value of 0.371 nm 
in comparison to 58% and 0.364 nm for the samples treated without a 
molten salt. The char yield for samples treated in molten salt decreased 
from 67% at 500 ◦C to 43% at 800 ◦C. Lu et al. [72] also obtained 
micro-sheet like porous carbon with specific surface area of 843 m2/g 
and d-spacing value of 0.393 nm by treatment of bamboo shell with 
molten Na2CO3-K2CO3 at 850 ◦C. The discussion above suggests that the 
key issues for having high char yields with optimized porosities are the 
selection of biomass and the conversion efficiency of biomass into car-
bon. Fig. 2 illustrates various biomass sources to synthesize char with 
different compositions. It shows the final properties of the biochar could 
be engineered by optimizing the composition of the biomass, tempera-
ture and heating rate [73,74]. In addition, it is illustrated how the 
extracted carbon inherits the texture and pore structure of the pristine 
biomass [75–78]. 

2.3. Extraction of carbon from biomass 

Biomass-derived carbon is obtained by two stages of carbonization 
and polymerization. In the first stage, at temperatures between 400 and 
700◦C, volatile matter containing H, N, and O is lost, and some C–O and 
C–C bonds are cleaved to form small molecules including CO, H2O, and 
CO2. At a temperature close to 700◦C, the residual carbon atoms form 
planar aromatic structures with predominantly H-terminated edges. 
However, at this temperature the pyrolyzed carbon can still contain 
other elements such as O and N. At this low temperature range (~ 
700◦C), the poor stacking of C-C aromatic structures can lead to the 
formation of micropores. In the second stage, at 600-1200◦C, the H 
atoms are removed and, based on the nature of carbon resource, the 
wrinkled graphite sheets are stacked either in a near-parallel fashion in 
regions called “organized carbon’ or arranged in a geometry resembling 
a ‘house of cards’. The pyrolyzed carbon displays a microporous struc-
ture with a density of about 2.22 g/cm3 that is lower than that of 
graphite. The structure contains many interstices that result from the 
irregular cross-linked graphene sheets that form the micropores [79,80]. 
The final structure can vary based on the type of starting material and 
the operational temperature (Fig. 3 (a)). 

The pyrolyzed carbon, which cannot be converted into crystalline 
graphite with infinite parallel layers of graphene (Fig. 3 (b)), even at 
temperatures >3000◦C, is called non-graphitizing carbon or hard carbon 
(Fig. 3 (c)). However, different biomass resources show different 
graphitization behavior. For examples biomass waste materials with 
higher cellulose content such as sugarcane bagasse [81], pineapple leaf 
fibers [82], mengkuang leaves [83], wastepaper [84] and cotton [85] 
showed a relatively high degree of crystallinity. Rouzaud described that 
the graphitization improves in the presence of hydrogen and at a 
shortage of oxygen in the precursors [86]. 

Soft carbon can undergo graphitization more easily than hard car-
bon. The soft carbon usually starts to transform into a liquid phase at a 
temperature around 400-500◦C, and the planar graphene sheets arrange 
themselves easily in a near-parallel manner (Fig. 3 (d)). The tendency of 
soft carbons to graphitization depends on the nature of the carbon 
precursor. Carbon derived from highly condensed aromatic hydrocar-
bon precursors is particularly amenable to graphitization [36,37,87,88]. 

The difficulty of graphitizing hard carbons even at high temperatures 
could be exacerbated for densely 3D crosslinked polymers and source 
materials enriched with lignin and hemicellulose [89]. Although lignin 

Fig. 2. The diverse range sources of biomass to synthesize biochar. Some pa-
rameters such as heating rate and temperature, as well as selecting the biomass 
with a favorable composition, directly affect the final quality of the biochar and 
lead to optimized biochar yield. 

N. Soltani et al.                                                                                                                                                                                                                                 



Progress in Energy and Combustion Science 87 (2021) 100929

5

Fig. 3. a) Graphitization of carbon as a function of tem-
perature by growing micrographitic crystallites of highly 
disordered aromatic carbon at 1100 K to graphitic structure 
at 2000 K [94], b) Structure of graphite, c) structure of 
non-graphitizing carbon, d) Structure of graphitizing car-
bon [95], and e) Illustration of graphite unit cell (with a =
2.46 Å and c =6.71 Å) and graphitic crystallite (La, crys-
tallite size; Lc, thickness) [96],[97]. Adopted from 
mentioned references after the required permission.   

Fig. 4. a) Idealized carbon structures (left column) and their expected signals for the 002 reflection (right column), 1 for a crystalline, graphitic carbon, 2 for a 
nanocrystalline, turbostratic carbon and 3 for an amorphous carbon (Intensität, german = Intensity, Glanzwinkel, german = Bragg angle). Adapted from [98] with 
permission of DeGruyter. b) X-ray photographs of a crystalline carbon (bottom), nanocrystalline/turbostratic carbon (middle) and of an amorphous carbon (top). 
Adapted from [99] with permission of IOP Publishing. c) X-ray patterns of a crystalline, graphitic (bottom), a nanocrystalline/turbostratic (middle) carbon, adapted 
from [100] and of the amorphous carbon SuperPLi from Timcal, recorded as a transmission powder sample on a STOE Stadi P diffractometer, λ = 1.78896 Å, by one 
of the authors (top). 
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possesses low oxygen content, its short-range-ordered structure post-
pones the graphitization. Biomass which contains glucose has lower 
onset temperature for graphitization. Indeed, glucose melts to form a 
liquid intermediate and accelerates the graphitization process [35]. 
However, Gomez et al. [90] have shown that the impregnation of 
medium-density fiberboard (MDF) wood in a 1 M FeCl3 solution could 
promote the graphitization of disordered carbon at lower temperature of 
700◦C. Here, the degree of graphitization α of a hydrocarbon reached 
0.8 at 2000◦C, as determined from the IG-to-ID intensity area ratio ac-
cording to α=IG/(IG+ID1). For the iron-catalyzed pyrolysis of the wood, 
0.7 was calculated which was only slightly lower. However, in an 
uncatalyzed reaction the degree of graphitization of the wood hard 
carbon was determined to 0.3 only, even at temperatures up to 2800◦C. 
Graphite from hard carbons is produced in a Fe-catalyzed reaction, by 
continuous dissolution of disordered carbon into iron or iron carbide 
particles, which are obtained in situ by the carbothermal reduction of 
Fe3+ ions to Fe0. By decreasing the temperature, graphite precipitates 
from the Fe-FexC-C solution. The removal of the iron or the iron carbide 
particles via acid etching can result in a microporous structure [91]. Xu 
et al. [92] showed presence of trace metals such as iron in bean shells. 
This Fe content improved the degree of graphitization. Derbyshire et al. 
[93] also reported the formation of laminar graphite after cooling of a 
solution of non-ordered carbon in cobalt and nickel foils heated to 
~1000◦C before. Ni and Co carbides are instable above 500◦C which led 
to traces of these compounds. With an Fe foil, only iron carbide was 
formed and no graphite was observed. 

2.4. Characteristics of biomass derived carbon 

To investigate the structure of carbons in general, several physical 
methods have proven to be of value. One of the most used techniques is 
X-ray diffraction (Fig. 4). From the models for the different structures of 
carbons, graphitic (crystalline, Fig. 4 (a.1)), turbostratic (nanocrystal-
line, Fig. 4 (a.2)) and amorphous (Fig. 4 (a.3)), the influence of the 
structure on the signal width and the intensity of the related X-ray 
patterns are exemplary shown in Fig. 4 (b) and 4 (c) [98]. It has been 
shown de-graphitized carbon black in addition to orientational disorder 
around normal layer (turbostratic stacks) features translational disorder 
along the layer plane (lubricostratic stacks). Measurements of the real, 
corresponding carbons are compared to the models by the circular X-ray 
patterns of a Debye-Scherrer film camera (Fig. 4 (b)) [99] and X-ray 
patterns recorded with the nowadays used modern X-ray diffractometers 
(Fig. 4 (c)) [100]. 

Based on the conventional rhombic unit cell as determined for 
graphite [101], the structure of turbostratic carbon is classified in terms 
of basal-plane correlation length La and c-axis correlation length Lc, 
which are estimated from the positions of the 002 and 100 Bragg re-
flections in diffraction pattern, respectively [25–27] (see Fig. 3 (e)). The 
d002 spacing is calculated by the Bragg’s equation, whereas the thickness 
(Lc) and average width of the graphitic domains (La) are calculated from 
the Scherrer equation. The 100 reflection corresponds to the honeycomb 
layers in the plane of the hexagonal lattice that are formed by sp2-hy-
bridization, whereas the 002 reflection is responsible for the domains of 
coherent parallel-stacked graphene sheets. The 002 reflection is clearly 
observed in soft carbon, which points to the stacking of carbon layers in 
a near-parallel orientation. By contrast, hard carbon exhibits a less 
intense and weakly shaped 002 reflection, which indicates the presence 
of a substantial number of single graphene sheets. The intensity of the 
002 reflection increases with the carbonization temperature and moves 
to the higher angle. Because the hexagonal layers in turbostratic carbon 
rotate randomly with respect to each other about the c-axis, the inter-
layer spacing (d002), increases from 3.34 to 3.44 Å as compared to 3.35 Å 
in graphite. The Lc and La values were observed to be between 4 nm and 
10 nm for hard carbon and 100 nm for soft carbon. However, both types 
of carbon show approximately the same values of Lc and La (1 nm) at 
temperatures below 1000◦C [25–27], [36,37,102]. Increasing the 

carbonization temperature will cause more horizontal growth of pseu-
dographitic instead of vertical growth, therefore at higher temperature 
higher La value than Lc value is expected [103]. 

Lotfabad et al. [104] observed the bimodal distribution in d spacing 
for 002 reflection for carbon extracted from banana peels. Fig. 5 (a) 
shows the X-ray diffraction pattern of carbon obtained via carbonization 
of banana peel pseudo-graphite (BPPG) at temperatures between 800 
and 1400◦C. The carbon contains two graphene interlayers with spacing 
of 3.86 and 3.354 Å, respectively, as well as 2.12- and 5.49-nm-thick 
pseudo-graphitic domains. The bimodal distribution of the interlayer 
spacing, d 002, indicated that the temperature was high enough to form 
equilibrium graphite (c/2 = 3.354 Å). This graphitization was due to 
small molecules of free sugars presented in banana peels which trans-
formed to liquid phase at 1400◦C and allowed the graphene sheets to 
partially align themselves. Moreover, pectin in the banana peels un-
derwent some aromatic ordering, which is similar to the behavior of 
cross-linked lignin. However, no equilibrium graphite was observed to 
form at a lower carbonization temperature of 800◦C, and an interlayer 
spacing of 3.97 Å with pseudo-graphitic domains of 1.53 nm was re-
ported [104]. High-resolution transmission electron microscopy 
(HRTEM) (Fig. 5 (b-d)), revealed more ordered carbon with increasing 
carbonization temperature. In both samples, which were heat-treated at 
800 and 1100◦C, well-defined mesopores were observed throughout the 
structure [104]. 

Raman spectroscopy is another technique to show the degrees of 
graphitic ordering (Fig. 6). Carbon with various proportions of sp2- and 
sp3-hybridization shows different structure and physical properties. The 
degree of disorder and domain size of sp2 are proportionate to the ID/IG 
intensity ratio obtained from Raman spectra. The Tuinstra-Koenig [105] 
law (Eq. (1)) relates the ID/IG ratio to the crystallite size of graphitic 
samples, which can be used as a good approximation for the ratio. For 
the large crystallite size with few defects the G-peak is more intense than 
D-peak while by increasing the defects the ID/IG ratio increases. This 
increasing trend stops when the amount of defects exceed a certain value 
and the D-peak intensity starts to decrease [106]. 

More precise determination of the crystallite size (La) in the graphitic 
parts of the carbons can be calculated by an adapted Tuinstra-Koenig 
law as described by Mallet-Ladeira et al. [107]. 

ID

IG
∝

1
La[nm]

(1) 

For the highly amorphous carbon, the corresponding Raman spec-
trum (Fig. 6 (a) upper) shows a plateau between 1300 cm− 1 ≤ 1/λ ≤
1700 cm− 1 representing the sum of vibrations mainly related to a 
disordered graphite lattice [36]. Turbostratic carbons are less disordered 
with curved graphene layers and the Raman signals are reduced to a 
relatively sharp G-band at about 1600 cm− 1 and the broad D-band at 
about 1340 cm− 1 [36]. The G-band for the crystalline carbon at around 
1580 cm− 1 (belonging to active E2g mode) corresponds to in-plane vi-
bration of sp2-bonded carbon atoms in the hexagonal lattice. The D band 
at around 1350 cm− 1 (belonging to A1g symmetry) mainly reflects the 
small amounts of disordered carbon, edges, and other structural defects 
(e.g. sp3-bonded carbon, vacancies, and topological defects) [108]. 

Doping of carbon by other elements leads to an energy shift of the G 
band. For example, a shift of the G-band to a higher energy (blue shift) 
was observed in nitrogen-doped carbon because of the increased carrier 
concentration from doping [109]. As the pyrolysis temperature in-
creases, the full-width half-maximum of G-band and ID/IG decreases, 
indicating more ordered structures [110,111]. 

X-ray photoelectron spectroscopy (XPS) has suitably been developed 
to determine hybridization states of carbon and carbon atoms bound to 
non-carbon atoms to form functional groups [112,113]. As seen in 
Fig. 7, the de-convoluted C 1s signal of the XP spectrum of a mesoporous 
carbon can show many participating C-C and C-O species at different 
binding energies. To give an impression on the respective functional 
groups shown in the XP spectrum, such groups are marked with their 
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numbers in an exemplified carbon network. For a hard carbon, similar 
spectra can be measured with deviations in the binding energies ac-
cording to the binding energy referencing and general composition of 
the carbon, e.g. the influence of other elements like N, S or halogens. The 
sp2 carbon double bonds C=C of a typical hard carbon are located at a 
binding energy of 284.6 eV [114]. The sp3 carbon bonds C-C, the C-O 
and the C=O bonds, as well as the π− π* graphitic shake-up satellite 
cover binding energies of 285.6, 286.7, 288.3, and 290.4 eV, respec-
tively [114–116]. A higher peak-intensity ratio of sp2/sp3 points to 
lower levels of structural defects in the hard carbon. Note that variations 
of the π− π* contribution, typically related to the delocalization of p 
electrons e.g. in sp2-hybridized carbon system, can hint to different 
degree of (local) disorder. Higher disorder might be responsible for a 
localization of the π charge and the disappearance of the π− π* contri-
bution [117,118]. 

However, the participation of the π− π* contribution can alter e.g. by 
a degraded overlap of p orbitals compared to graphite, a shorter life time 
of the excited state, changes in the layer-to-layer interactions and/or 
topographic effects [117–120]. 

3. Tailored carbon anodes derived from biomass 

Pyrolyzed biomass-derived carbon is non-graphitizing, hard carbon 
with varying textures, morphologies, and degrees of crystallinity. It 
provides short diffusion paths for ionic and electron transport and can 
therefore be an attractive material for anodes in metal-ion batteries. The 
solid structure of such carbon with short diffusion pathways is the basis 
for the excellent cyclability in batteries without substantial exfoliation 
during the insertion and extraction of ions. In addition, the tailorable 
porous architecture with hierarchical pore structure, if desired, can 
support high gravimetric specific energy capacity in the batteries. For 
example, the formation of Li layers on the graphene sheet, the storage of 
Li in the micropores, and the formation of LiC2, C–H–Li, or N–Li bonds, 
makes the turbostratic carbon structure more likely to have extra charge 
than fully-intercalated graphite with LiC6 stoichiometry [121,122]. 

To date, many studies have sought to improve the performance of 
pyrolyzed biomass-derived chars by engineering the char porosities (e.g. 
sacrificial silica template [123], chemical and physical activation [124, 
125]), chemical substitutional doping (e.g. boron [126], nitrogen [127], 
and phosphorous [128]), and the fabrication of hybrid nanocomposites 

Fig. 5. a) XRD pattern of BPPG heat-treated at 800, 1100, and 1400◦C with post air-activation, b-d) HRTEM micrographs of samples BPPG-800-A, BPPG-1100-A, and 
BPPG-1400-A, respectively [104]. Adapted from mentioned reference with permission of the American Chemical Society. 

Fig. 6. a) Raman spectra of crystalline, graphitic carbon (bottom), nanocrystalline turbostratic (middle) made by pyrolysis of polymer precursor film and amorphous 
carbons made by physical vapor deposition (PVD (top)). The corresponding scanning electron microscopy pictures in b) Show the individual sample architecture and 
c) The transmission electron microscopy images support the crystallinity complimentary to the Raman spectra. Adapted from ref. [36] with permission of Elsevier 
B.V. 
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consisting of a carbonaceous matrix and a transition metal oxide 
[129–131]. However, the performance of electrochemical 
energy-storage devices using existing carbonaceous material is limited 
in terms of charge capacity, rate capability, and electronic conductivity. 
Addressing these issues require the following: 1) electrodes composed of 
hard carbon with an optimized specific surface area to facilitate charge 
capacity [132–134]; 2) nanostructured carbon to shorten the diffusion 
pathways at the electrode/electrolyte interface [135]; 3) hetero-
atom-doped carbon materials to alter electronic properties [136,137]; 
and 4) hierarchically porous carbon to accelerate ion transport with 
improved rate capability [138,139]. Indeed, the hollow macroporous 
cores, which are connected and open to the outer mesoporous shell can 
serve as an electrolyte reservoir and facilitate mass transport [140]. We 
discuss each of these in detail in the following sections. 

3.1. Morphological modification 

In most cases the extracted carbon inherits the textural architecture 
and porous structure of the pristine biomass. However, the structure and 
morphology of carbon could be modified to yield nano particles, nano-
tubes, nanofibers, nanosheets, and porous carbons with desired shape by 
using some chemical techniques [141–144]. In the following sections, 
we will explain the most common modification techniques which 
modify the morphology of the extracted carbon from biomass and affect 
the electrochemical properties of restructured carbon. 

3.1.1. Carbon quantum dots (0 D) 
During the past decades, zero-dimensional carbon dots (CDs) of less 

than 10 nm and with sp2/sp3 hybridization as a special class of carbon- 
based nanostructures with tunable band gap have shown exceptional 
chemical and physical properties that may facilitate a wide range of 
potential applications in optics, energy storage, medicine and others 
[40,145,146]. There are two routes for successful CD syntheses: I) the 
bottom-up method by converting suitable organic precursors to CDs via 
chemical, thermal decomposition, solvothermal/hydrothermal treat-
ment or microwave synthesis, and II) the top-down approach by 
breaking down a large carbon structure e.g. found in graphite, soot, 
CNTs or activated carbons into CDs via an arc discharge method, laser 
ablation, electrochemical synthesis and etc.  However, these paths need 
either costly and toxic organic precursors or a complex equipment and 
post-treatment processes to synthesize CDs. Recently, natural 

carbon-based materials such as silkworm chrysalides [147], rice husk 
[148], coconut husk [149], garlic [150], Jinhua bergamot [151], orange 
juice [152], and bagasse [153] can save expenses for the organic starting 
and can become of interest for the syntheses of CQDs and GQDs. 
Although, not reaching a precise particle size is the main drawback of 
biomass as the growth rate of the particles can only be controlled by 
heating rate, reaction time and temperature to some extent. CDs with a 
high concentration of oxygen-containing surface groups, high defect 
density or a large specific surface area show superior performances in 
supercapacitors. CDs derived from biomass that possess a large specific 
surface area and a high content of nitrogen as dopant are favored as 
electrodes in supercapacitors due to their higher storage performance. 
Additionally, it is easier to synthesize high N-doped CDs from biomass 
compared to a bottom-up approach [154–157]. While CDs show inter-
esting results in supercapacitors, the reports about their utilization in 
batteries are still scarce. CDs as conductive additives in composite anode 
materials can significantly increase the electrochemical performance of 
the anodes. Thus, GQDs coated on VO2 enable a specific capacity ->420 
mAh/g and capacity retention of 94% after 1500 cycles at 18 A/g vs. 
Li+/Li [158], CDs coated on a Mn3O4 composite reach a capacity of 934 
mAh/g after 50 cycles at a 0.1 A/g vs. Li+/Li [159], and a Sb@CQDs 
composite with specific capacity of 510 mAh/g after 120 cycles at 
0.5 A/g vs. Na+/Na [160]. Hierarchical TiO2− x imbedded in GQDs 
give a specific capacity of 160 mAh/g at 10 C after 500 cycles vs. Li+/Li 
[161]. All these examples support the positive effect of CDs in electro-
chemical energy storage devices. In the previously described cases the 
electronic conductivity of the samples and the ion transfer rate between 
the electrolyte and the active material were increased by the combina-
tion of highly conductive CDs and their large specific surface area. The 
large potential of CDs in energy storage applications utilizing materials 
from renewable sources have not been reflected by literature yet. There 
are only few reports on the application of CDs derived from biomass in 
electrochemical processes. Yi et al. [162] reported on the synthesis of 
GQD/Fe3O4 nanocomposite via a one-step thermochemical reaction. 
The thickness of synthesized GQD was measured about 10 nm accom-
panied with some multi- layer graphene with thickness of 10 to 150 nm. 
GQD/Fe3O4 delivered high specific capacity of 3829 mAh/g at 0.05 A/g 
vs. Li+/Li, which is four times higher compared to pure Fe3O4 having a 
theoretical specific capacity of 924 mAh/g. Alkaline lignin, the main 
component of the effluents of paper pulping, with a large number of 
hydrophilic groups, provided remarkably reactive sites for the growth 

Fig. 7. XP high resolution spectrum of the C 1s signal of mesoporous carbon (upper left). The spectrum fits represent eight contributions which can be related to 
several chemical functionalities in an exemplified carbon lattice (lower right). Adapted from ref. [112] with permission of Elsevier B.V. 
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and anchoring of iron nanoparticles, to be found back in the interlayer of 
the graphene-like carbon sheets. Abundant reactive sites for Li coordi-
nation and an optimized electronic structure for a fast charge transfer 
are the main reasons for the superior electrochemical performance. Peng 
et al. [163] produced CDs from glucose with 5 nm in diameter by a 
simple aqueous solution route. The carbohydrates were dehydrated 
using concentrated sulfuric acid followed by a decomposition into car-
bogenic (called carbogenic due to their oxygen content) nanoparticles 
by nitric acid. The glucose-derived carbon dots using chemical oxidation 
method provide a superior conductivity and a rapid ion transport. 
Therefore, a good cycling performance and a high rate capability in LIBs 
and SIBs were reached, namely specific capacities of 864 mAh/g at 0.5 C 
and 153 mAh/g at 20 C after 500 cycles vs. Li+/Li and 324 mAh/g at 0.5 
C and 55.7 mAh/g at 20 C after 500 cycles vs. Na+/Na [164]. 

3.1.2. Nanotubes and nanowires (1D) 
CNTs are members of the fullerene structural family and related to 

spherical fullerenes. Bending and rolling a graphene layer theoretically 
forms seamless single-walled cylindrical structure composed of sp2-hy-
bridized atoms that can be extended to a multi-walled one if layered 
graphene is considered. In this type of structure, the graphite monolayer 
planes are often parallel to the tube axis [165,166]. 

Arc-discharge, laser ablation, and chemical-vapor deposition are 
typically used for the synthesis of CNTs [167]. Alternatively, CNTs and 
nanofibers can also be obtained sustainably from biomass. For example, 
Xie et al. [168] claimed that CNT can be extracted from bamboo or wood 
by pre-carbonizing the raw materials in air at 240◦C and cyclically 
heating the obtained materials to 400◦C in the presence of oxygen at 
pressures below atmospheric (1 KPa). This cyclic oxidation procedure 
leads to the decomposition of the carbon from cellulose microfibrils 
because it has a lower resistance to oxidation at elevated temperatures 
than lignin. Consequently, a channel forms within the residual lignin 
matrix. Since the volatile carbon-containing vapor was trapped inside 
the channel covered by carbonized lignin, it is concentrated on the in-
ternal surface of this “nano-channel” and finally forms the CNT. The 
pre-carbonization promotes the dehydration of cellulose to reach higher 
carbon contents and to stabilize the lignin to shift its decomposition to 
higher temperatures. To test this mode of formation of CNTs from 

biomass sources, these authors treated pure lignin and pure cellulose 
with the same heating-oxidation protocol. However, they were not 
successful in producing CNTs. The authors attributed the failure to the 
molecular and spatial arrangement of cell walls [169]. 

Gao et al. [170] reported the synthesis of CNTs from yeast-wheat 
flour dough (Fig. 8 (a)). The fermented dough was cut into small 
pieces and dried at 50◦C for 6 h, and the pieces were then heated to 
750◦C for 2 h in argon gas. During the heating process, highly dense 
CNTs were formed simultaneously on both the inner and outer surfaces 
of the porous activated wheat dough (AWD). The growth of yeast cells in 
the dough caused the adhesion of gluten proteins and the dough 
captured CO2 released during the decomposition of carbohydrates 
(starch and sugars) via the metastatic reactions of yeast. This prepara-
tion led to an expansion in size and an interconnected porous structure. 
SEM and TEM analysis (Fig. 8 (b-d)) revealed highly dense CNTs with 
3-20 μm in length and crystal-lattice spacing of ~0.35 nm on the acti-
vated dough surface and pore walls of AWD. 

CNTs are considered to be a good anode material for Li/Na-ion 
batteries in view of their unique structure; high electrical conductivity 
(106 S/m) owing to π-orbital overlap; low density; high thermal con-
ductivity to dissipate heat from electrodes; and high rigidity (Young’s 
modulus of the order of 1 TPa) [171–173]. Specific features of CNTs that 
help to increase Li intercalation include the presence of delocalized 
electrons due to bended planar orbitals of sp2-hybridized carbon and its 
greater electronegativity as compared with graphitic sheets [174]. 
However, CNT have an irreversible Li ion capacity, such that the rate of 
intercalation surpasses the removal rate and also lower binding energy 
with Li compared to cohesive energy of bulk Li: these are key factors that 
limits their applicability. In addition, unlike graphite, CNT anodes show 
broad voltage changes during the discharge process, which inhibits the 
use of CNTs in applications that require a stable power source. Various 
reversible capacities have been reported for CNT anodes and, in some 
cases, they exhibit an intercalation of up to LiC3, as compared with the 
LiC6 of graphite. This behavior shows that Li-storage in CNTs proceeds 
via mechanisms that differ from those in graphite [175–180]. 

The low capacity of CNT anodes is related to large energy barriers if 
Li+ ions need to diffuse through the sidewalls. Opening the closed ends 
of the CNTs and introducing lateral topological defects on CNTs enable a 

Fig. 8. (a) Schematic illustration of the formation and morphology of yeast-derived CNTs. b) SEM image of the filamentous CNTs on the AWD surface. c) High- 
magnification SEM image of the filamentous CNTs, (d) HRTEM image of CNT; inset shows lattice fringes of the tube wall. Adopted from [170] after the 
required permission. 
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regular intercalation of Li+ ions [181]. After the removal of a carbon 
atom introduces a hole inside the CNT wall with open ends, Li+ ions can 
access the internal walls of CNTs more easily and absorb on them more 
readily, and therefore accumulate successfully in the interior as well as 
on the exterior of CNTs. The energy barrier for the diffusion of Li+ ions 
into the CNT can be decreased by simply cutting the ends. Long CNTs, 
with high aspect ratios ranging from several to tens of micrometers and 
diameters of up to a few nanometers, cause an effective reduction in the 
diffusion of Li+ ions by forcing the ions to pass through a long, 
one-dimensional pathway [171]. These results underline the importance 
of optimizing the CNT morphology to improve their Li+ ion storage 
capacity [171]. Two effective ways of modifying the length of CNTs are 
chemical etching and ball milling, which increase the reversible ca-
pacities for Li intercalation to 681 mAh/g (Li1.8C6) [182] and 641 
mAh/g (Li1.7C6) [183], respectively. 

The defects and disordered structures of CNTs derived from biomass 
could also facilitate the penetration of ions into the cavities of CNTs. For 
example, carbonized microtubular carbon extracted from cotton 
exhibited a reversible specific capacity of 315 mAh/g vs. Na+/Na. It also 
delivered specific capacities of 275 and 180 mAh/g at current rates of 
0.5 C and 1 C, respectively. The sloping potential profile was attributed 
to Na+ ion adsorption on defects, edges, and the surface of the nano-
graphitic domains, whereas the plateau region was related to nanovoid 
filling [184]. 

In contrast with CNTs, the graphite layers in nanofibers (graphitic 
filamentous structures) are arranged either perpendicular to the fiber 
axis or at an angle to it [171,185]. Carbon nano-fibers (CNFs) with more 
disordered, less oriented structure and more defects could increase the 
reversible capacities. However, the presence of too many defect sites 
could break the conjugated π bonds and make CNFs electrical insulators 
[186,187]. 

CNFs performance can be further improved by creation of a 3D 
porous structure out of them. It will be explained in section 3.1.4 how 
interconnected pores networks can improve the electrochemical per-
formance of the battery. Xing et al. [188] showed that by synthesis of 
phenolic resin-based mesoporous nanofibers using hard template the 
delivered Li-storage capacity reached up to 1132 mAh/g at 0.1 A/g after 
100 cycles. A high rate capability with a specific capacity of 880 mAh/g 
at a current density of 5 A/g was demonstrated as well [189]. 

Tao et al. [142] showed that although the capacity of CNFs is less 
than that of graphene, it is comparable with that of electrospun carbon 
nanofibers from walnut shells. The carbon extracted from walnut shells 
exhibits long nanofibers with diameters of 280 nm and smooth surfaces 
with abundant pore structure and good flexibility. To prepare the 
nanofibrous carbons, the liquefied products of the mixed walnut shell 
powder, phenol, and sulfuric acid, together with formaldehyde and so-
dium hydroxide, were first mixed and diluted by distilled water and 12 
wt.% polyvinyl alcohol. Polyvinyl alcohol adjusted the viscosity, and a 
nanofiber composite was produced by electrospinning. Finally, the dried 
electrospun material was carbonized at 1500◦C for 1 h in an argon flow. 
The electrochemical performance of the nanofibers reached a specific 
capacity of 270 mAh/g at 0.03 A/g, and displayed a good cycling per-
formance and high reversibility of above 280 mAh/g after 200 cycles at 
0.1 A/g vs. Li+/Li. These results demonstrate that the 1D nano-
structured carbon, mutually interconnected in all directions, can reduce 
the path length and facilitate faster electron and metal-ion migration. 
Further, the presence of graphite-like crystallite layers and abundant 
pore volume led to an increased specific capacity [142]. 

Luo et al. [190] proposed a novel hard carbon nanofiber derived from 
cellulose nanofibers. Cellulose nanofibers were prepared from bleached 
pulp and carbonized at 1000◦C under argon for 2 h. The resulting 
nanofibers were 50-100 nm wide, reached lengths of up to several mi-
crons, and had specific surface areas of 377 m2/g. They were stacked on 
top of each other forming an interconnected network in all directions, 
which reduced the path length for faster electron and Na-ion migration. 
The nanofibers showed a reversible specific capacity of above 250 

mAh/g at a current density of 0.04 A/g vs. Na+/Na; good rate capability 
of 85 mAh/g at 2 A/g; and a cycling stability of 176 mAh/g over 600 
cycles at a current density of 0.2 A/g. 

Jayaraman et al. [191] produced 1D graphitic fibers with a 
hollow-structured morphology via a modified catalytic chemical vapor 
deposition process using vegetable cooking oil as a carbon source. The 
synthesized carbon was cycled at a voltage range of 0.005-1.5 V vs. 
Li+/Li and delivered capacities of ~512 and ~336 mAh/g at a current 
density of 0.037 A/g for first discharge and charge, respectively, and a 
Coulombic efficiency of 84% after 80 cycles. The reason of this 
improvement is due to the 1D ordering that provides the features like 
shorter Li+ ion diffusion pathways, high surface-to-volume ratio, tuning 
of the crystallographic orientation for facile charge transport. 

3.1.3. Nanosheets and flakes (2D) 
Carbon nanowalls (CNWs), carbon nanosheets, or nanoflakes are 

two-dimensional self-supported networks of vertically aligned graphitic 
walls with high surface-to-volume ratios and low thicknesses ranging 
from a few nanometers to several tens of nanometers. The edges of 
CNWs are composed of planar graphene sheet stacks that stand almost 
vertically on the substrate [192,193]. Regarding the adsorption of Li+

ions on two sides of the graphene sheets, the theoretical specific capacity 
can increase to 744 mAh/g with the formation of an expected stoichi-
ometry of Li2C6 . However, according to some reports, Li ions seem to 
not be adsorbed onto pristine monolayer graphene: instead, Li+ ions 
were located mainly within the CNWs interlayers and on the edges, or in 
association with defects which are created during fabrication 
[194–197]. Positive lithiation energy of graphene compared to a nega-
tive value for graphite forces the absorbed Li atoms on graphene to 
aggregate into clusters and eventually macroscopic dendrites instead of 
a formation of a stable Li− graphene phase [179,180]. 

Two-dimensional carbon nanostructures, especially 2D porous car-
bon materials, are used in electrochemical energy storage. Large surface- 
to-volume ratios, sharp edges of the CNWs, continuous conducting 
pathways for electrons, and facile strain relaxation during battery 
operation results in significant improvements in power and energy 
density [198,199]. 

Various types of biomass materials have been used in previous work 
to produce nano sheets. Here, we give some examples to provide an 
overview of the extraction of nanosheets from waste biomass materials. 

Wheat straw has been used to extract layered graphene (nanosheets) 
[200]. Wheat straw features layers of hydrophobic wax in its outermost 
part and also a loose layer of lignin and hemicellulose which protects the 
crystalline cellulose inside [201,202] (Fig. 9 (a)). Since the cross-linked 
polymers, including hemicellulose and lignin, do not undergo the 
complete removal during chemical activation, the crystalline cellulose 
was not separated efficiently and leads to the formation of carbon with 
honeycomb morphology [203]. However, using hydrothermal pro-
cesses, e.g. with highly concentrated aqueous KOH solution, removed 
the wax and dissolved hemicellulose and lignin whereas the crystalline 
cellulose was partially degraded but not dissolved. The loose connec-
tions between the cellulose microfibrils were lost completely after 
carbonization at 800◦C with the residual KOH, and finally the separated 
layers of graphene were obtained. Additional carbonization and chem-
ical treatment with KOH (Fig. 9 (b-e)) led to the formation of a highly 
continuous, 1.2–3.5-nm-thick graphene sheet-like structure with abun-
dant micro- and mesoporosity [200]. Note that a pristine graphene sheet 
is atomically flat with a well-known thickness of 0.34 nm [204]. 

In another study, 2D porous carbon nanosheets derived from silk 
were synthesized in the presence of metal salts such as FeCl3 and ZnCl2 
[205]. Such salts not only facilitate the dissolution of natural silk but 
also act as effective activation and graphitization agents. Immersion of 
silk fibroin in FeCl3 and ZnCl2 solutions which induced a self-assembly 
of the hydrophobic and hydrophilic blocks of silk fibroin [206]. 
Lamellar-like layered structures were converted into carbonaceous 
materials at 900◦C for 1 h in N2 atmosphere. The synergistic effects of 
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high specific surface area (SBET=2494 m2/g), high volume of hierar-
chical pores (2.28 cm3/g), and N-doping (4.7 wt.%) resulted in an ul-
trahigh reversible Li-storage capacity of 1865 mAh/g vs. Li+/Li. 

Another material used to produce sheets is waste-starch-based 
packing peanuts [207]. At a rate of 1 C, carbonized packing peanut 
showed a specific capacity of 250 mAh/g vs. Li+/Li. This improved rate 
performance is related to the irregular 2D and porous microstructure of 
3D interconnected carbon microsheets, which avoids agglomeration 
during electrode fabrication, facilitates electrode/electrolyte contact 
and reduces the interfacial charge transfer resistance. Moreover, the 
voids that form between microsheets buffer the slight volume changes 
during lithiation-delithiation process. 

Using wheat stalk as a precursor, Zhou et al. [208] obtained meso-
porous ultrathin 2D nanosheet carbon with high degree of graphitization 
(~90%) via hydrothermal synthesis followed by the mandatory graph-
itization process. The mesopores and the graphene layers thereby ob-
tained were seen to provide extra active sites to store Li+ ions and 
migration paths to facilitate a proper electron transfer. The intercalation 
sites for Li+ ions are the main contributor to the rate performance and 
cycling stability. Flat voltage profiles with a negligible charge/discharge 
voltage hysteresis revealed the highly graphitic nature of the sample. 
The graphitic carbon nanosheet showed high reversible capacity (502 
mAh/g at 0.1 C), excellent rate capability (461, 429, 305, and 161 
mAh/g at 1, 2, 5, and 10 C, respectively) and superior cycling perfor-
mance (215 mAh/g at 5 C after 2000 cycles and 139.6 mAh/g at 10 C 
after 3000 cycles). 

Finally, carbonized and hydrothermally activated peanut skin has 
been used to successfully generate porous carbon with high surface area 
of 2500 m2/g and a sheet-like structure [143]. These properties enable 
good rate capability and cycling stability of the carbon sheets. It deliv-
ered reversible capacity of 431 mAh/g at rate of 0.1 A/g and 47 mAh/g 
at rate of 10 A/g vs. Na+/Na. 

Sheet-like structure carbon was also successfully prepared from 
cherry petals [209]. It provided an initial reversible capacity of 310 
mAh/g and delivered a high retention rate of 99.3% at 0.02 A/g after 
100 cycles vs. Na+/Na. The electrochemical process was also investi-
gated by XPS analysis. The binding energy of the Na 1s spectral region of 
the electrode was measured during the charge/discharge at 1.6, 1.15, 
0.25, 0.1, and 0.01 V. The measurements revealed that the binding en-
ergy at a discharge voltage of 0.01 V (1071.4 eV) is greater than that at 
discharge to 0.1 V (1071.2 eV). This shift to higher binding energy at 
lower voltage was interpreted by the authors as corresponding to 
sodium-ion insertion/ extraction in the interlayer of the graphitic 
microcrystallites due to significant increase in valence of Na. However, 

the binding energy of the Na 1s spectra from 0.1 V to 3 V is almost 
constant, which is indicative of Na+ adsorption behavior on the surface 
of the material at high potential stage. 

3.1.4. Porous carbon (3D) 
Since the capacitive reactions occur on the surface of the electrode, it 

is important to use carbon with high surface area [210]. Porous carbon, 
because of its tunable morphology and surface functionality, offers a 
wide range of possibilities for improvement and tailored design of a 
battery anode. According to the International Union of Pure and Applied 
Chemistry (IUPAC), porous materials are classified into three groups: 
microporous ( d < 2 nm), mesoporous (2 nm ≤ d ≤ 50 nm), and mac-
roporous (d > 50 nm) [211]. The micropores is generated from dimin-
ishing of functional groups, volatilization of small molecules while the 
meso- and macropores are originated from the natural structure of the 
biomass precursor. Ion-buffering reservoirs can be formed in the mac-
ropores to minimize the diffusion distances to the interior surfaces [212, 
213]. Furthermore, the mesoporous walls provide low-resistant path-
ways to transport ions through a porous particle, and micropores confine 
the ions in their voids [214–216]. 

Drawbacks in the electrochemical energy storage properties can 
often be overcome by integration of 2D graphene sheets to establish 3D 
porous and interconnected networks such as films, scaffolds or hierar-
chical structures. Batteries with porous electrodes offer high power 
density in addition to high energy density [217,218]. They can 
compensate large volume if active material is placed in the voids. The 
foam-like nature of the porous 3D carbons allows the electrolyte to be 
homogeneously distributed in the entire electrode composite and reach 
active sites, even in the pore system (e.g. with the help of the capillary 
effect). 

Despite the desirable specific capacity and rate capability of porous 
carbons [219], they suffer from parasitic reactions, in part because of 
SEI formation [220], poor Coulombic efficiency [221], and large (1 V or 
higher) charge/discharge voltage hysteresis [222]. Indeed, porous car-
bons with high specific surface area provide a large number of free high 
energy sites that irreversibly trap metals ions. A substantial over-
potential is required to remove them [223]. Therefore, biomass-derived 
carbon with low micropore volume is desirable. For potassium, even 
mesopores can be beneficial. 

Porous carbons are synthesized mainly by hard and soft templating 
processes [224–226]. Typical hard templates used for the fabrication of 
porous carbon are porous silica such as MCM-48 [227] or SBA-15 [228], 
colloidal silica [229], solid core/mesoporous shell silica [230], bimodal 
porous silica [231], metal carbides [232,233], and other materials. The 

Fig. 9. a) Schematic diagram displaying the overall evolution of wheat straw into few-layer graphene, b, c) SEM, d) TEM, and e) SAED pattern of few-layer graphene. 
Adapted from [200] after the required permission. 
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porous rigid and stable template is impregnated with a carbon precur-
sor, but the template determines the size and morphology of the ob-
tained carbon. However, removing the hard template is quite difficult, 
requiring acid or strong base. Another method in which a hard template 
is used is benign ceramic templating, whereby the template is formed 
in-situ [234–237]. Here, an Mg salt or an Mg-organic compound is mixed 
with a carbon precursor [238,239]. During the carbonization, the Mg 
compound converts to MgO at lower temperature, and leaching the 
carbon/MgO composite yields a porous carbon with a micropore size of 
1-1.9 nm. For example, absorption of Mg(NO3)2 solution on cotton leads 
to the formation of an MgO-template within the cotton-derived carbon 
and results in high surface area of 1260 m2/g [235] . 

Nie et al. [240] reported the formation of hollow graphe-
ne-encapsulated Si particles by the magnesiothermic fabrication and a 
subsequent CVD process. Mesoporous SiO2 particles were first prepared 
by an aerosol spraying process using colloidal silica solution and sucrose 
as the precursor followed by calcination in air. By reduction of meso-
porous SiO2 spheres via Mg at 900◦C, composite particles of Si, MgO, 
and Mg2Si were obtained. In the next step via a CVD process and using 
acetonitrile vapor as carbon and nitrogen source and MgO as template 
and catalyst, graphene shells were formed on the Si particles. Finally, 
after selectively removing MgO, Mg2Si, and unreacted Mg by an acidic 
treatment, Si particles encapsulated in nitrogen-doped graphene cages 
were obtained. Another practical way to prepare mesoporous carbon is 
to employ a hard template with well-ordered regular channels, such as 

anodic aluminum oxide (AAO) membranes. Xing et al. [188] synthesized 
mesoporous carbon nanofibers (MCNFs) by using porous anodic AAO 
membrane and colloidal silica Ludox TM-40 as the dual hard templates, 
and phenol resin as the carbon precursor. The as-prepared MCNFs ma-
terial possesses large specific surface area, with a unique hierarchical 
nanostructure composed of open macroscaled channels derived from the 
channels of AAO template, in combination with mesoscaled pores 
developed from the removal of colloidal silica and micropores generated 
from the carbonization of phenol resins. 

In approaches using the soft template, the network is established by 
amphiphilic copolymer surfactants or other non-inorganic polymer-like 
formers [241,242]. However, the mesoporous textur of a soft template is 
usually not as precisely controllable as that of a hard template. The soft 
template is often formed during the reaction and directs the formation of 
a porous carbon structure and may be readily removed by solvent 
washing, thermal decomposition, or different drying approaches [241]. 
However, the synthesis of porous carbon materials by these methods is 
complicated, comprises multiple reaction steps with low ultimate yield, 
and often involves expensive or toxic raw materials. These reasons limit 
the success of such carbons as many processes show insufficient scal-
ability and can only be produced batchwise depending on the size of the 
reactor. 

Therefore, biomass has attracted considerable attention as a 
resource. At the correct carbonization conditions, the chosen material 
preserves its natural pore and cell structure [243–248] which can be of 

Fig. 10. a) Photographs of a natural red mangrove root piece 
and the carbonized structure of the aerenchyma tissue with a 
digital closeup view image and a scanning electron micro-
scopic picture, respectively [247]. SEM micrographs of b) 
Carbonized porous carbon derived from rice straws at 800◦C 
with post activated with KOH [249], c) Carbonized porous 
carbon derived from apricot shells [144], d) Carbonized peat 
moss at 1100◦C and post-activated in dry air at 300◦C [250], 
e-g) Carbonized  hemp-derived carbon at 800◦C and 
post-activated in steam at 800◦C, (blue arrows indicate the 
primary flow of steam in the reactor), and h) Pore-size distri-
bution of the hemp-derived carbon using Hg intrusion poros-
imetry with several tens of micrometers (I) and several 
micrometers (II) [251]. Adopted from mentioned references 
after the required permission.   
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interest for e.g. desalination as shown for a red mangrove root [247] or 
for energy storage applications [248] (Fig. 10 (a)) for which some more 
examples are given in the following paragraph. 

Carbon with parallel macroporous channels was obtained from rice 
straws (silica fraction as an “in-situ” sacrificial template) [249] (Fig. 10 
(b)), whereas carbon possessing pore channels with meso- and macro-
porous walls was derived from apricot shells [144] (Fig. 10 (c)). Mac-
roporous interconnected networks of carbon nanosheets were extracted 
from peat moss [250] (Fig. 10 (d)). Finally, channel-shaped pores and 
porous walls made from hemp [251] (Fig. 10 (e-g)) with diverse 
pore-size distributions confirmed the feasibility of tailoring pore diam-
eter and pore shape of the carbonized biomass by the various synthesis 
process. Nevertheless, the original morphology of the biomass is the 
primary contributor to the pore shape of the final carbon. Fig. 10 (h) 
shows that channel-shaped pore size and also macro-porous walls of 
carbon are changed from several tens of micrometers (I) to several mi-
crometers (II), respectively. 

Hydrothermal carbonization can offer a green and effective prepa-
ration of hydrochars with a controlled distribution of pores from the 
nanoscale to macroscopic dimensions. In this technique, water is used as 
the reaction medium at working temperatures of 180–250◦C under 
saturated pressure. The process involves numerous and simultaneously 
proceeding reactions of hydrolysis, dehydration, decarboxylation, 
condensation, polymerization, and aromatization of the original pre-
cursor. The carbon yield in this case (70–80%) is higher than that ob-
tained by pyrolysis or chemical activation, because of the many 
functional groups on the surface [252]. However, different components 
of lignin, cellulose, hemicellulose, and pectin show differing sensitivities 
toward hydrothermal processes, which strongly affects the characteris-
tics of the derived carbons. Lignin is most resistant to hydrolysis [253]. 

Some additional steps are needed for increasing the porosities and 
textural properties of the hydrochars. These include physical activation 
(that is, partial gasification of chars in an oxidizing atmosphere con-
taining CO2, O2, or H2O at high temperature) and chemical activation 
(that is, carbonization after impregnation with dehydrating chemical 
reagents such as Na2CO3, K2CO3, NaOH, KOH, AlCl3, LiCl, KCl, ZnCl2, 
and H3PO4 at moderate temperature) [254]. ZnCl2 and H3PO4, owing to 
their excellent dehydration characteristics, are widely used in research 
but also for manufacturing [19]. The mechanism of the activation pro-
cess is not fully understood. This provides a possible mechanism of 
activation that high concentrations of ZnCl2 gives Brønsted acidity to the 
solution and helps dissolve the cellulosic constituents of the biomass 
[255]. The advantage of using ZnCl2 is found in the evaporation of ZnO 
if the carbonization temperature is sufficiently high. 

In the case of a base, oxygen removes any crosslinking bonds and 
facilitates the further rearrangement of the graphene layer to assume a 
crystallite form. Subsequently, the alkali-metal compound is leached out 
and micropores are created in the structure [256]. The final surface area 
of porous carbon and the pore-size distribution are influenced consid-
erably by the amount of volatile matter removed during pyrolysis and 
the concentration of the activating agent for removing carbonaceous 
species. Dissolution of the reaction products of the activating agent in 
the carbon can create porosities with a specific surface area up to 3000 
m2/g. 

A biomass precursor with a natural pore system is advantageous for 
chemical activation. Wheat straws have a porous fibrous structure and 
possess a number of capillaries with strong adsorbability that facilitate 
the access to KOH in solution, which helps to distribute the activating 
agent in the whole material. Carbonization and the leaching out of the 
reacted activation compound leads to the formation of a homogeneously 
porous material [257]. 

One study subjected peat moss to carbonization and KOH treatment, 
accompanied by mild air activation, to produce three-dimensional 
micro- and macroporous interconnected carbon nanosheets with a spe-
cific surface area of 196.6 m2/g. This process led to a stable cycling 
capacity of 298 mAh/g after 10 cycles at 0.05 A/g, good cycling 

retention of 255 mAh/g at the 210th cycle, and high rate capacity of 203 
mAh/ g at 0.5 A/g vs. Na+/Na [250]. 

One hard carbon was obtained by pyrolyzing and reducing apricot 
shells in H2/Ar at 1300◦C [144]. The carbon had a specific surface area 
of 13 m2/g and exhibited excellent cyclic stability of 338 mAh/g vs. 
Na+/Na after 300 cycle at 0.4 C, because of high sloping and plateau 
capacities. Hydrogen treatment appears to be beneficial to remove ox-
ygen from the carbon to facilitate the rearrangement of the graphene 
layers and to allow for a microcrystalline orientation along the a-axis, 
which results in a little bit smaller d002 and Lc, and larger La. The change 
in the structure and reduction in the defects concentration due to 
dangling bonds or oxygen-containing covalent bond, resulted in the 
outstanding reversible Na-storage capacity of the obtained material. 
Samples pyrolyzed at lower temperature and without H2 possess a high 
level of defects compared to the carbon reduced by hydrogen. The 
electrochemical characterization of these carbons revealed better per-
formance at high rates of up to 4 C, which demonstrates the favorable 
behavior of highly defective carbon for fast Na+ ion diffusion resulting 
from the higher interlayer distances [144]. However, hard carbon that is 
carbonized at low temperature and with high level of defects suffers 
from low electronic conductivity owing to its disordered microstructure 
[114]. Fingolo et al. [258] showed annealing under isopropanol vapors 
enabled to increase the sp2 carbon content and degree of graphitization 
of the biocarbons, which has improved electrical conductivity of these 
materials by up to three times. 

3.2. Element-doped carbon materials 

Although many novel materials have been proposed as anode ma-
terials for metal-ion batteries, only a few exhibits the efficiency required 
for anodes for alkali-metal storage. For example, hard carbon, metal 
alloys, and metal oxides. 

Hard carbon has received most attention because of its potentially 
low production cost, abundant resources, and its high storage capacity 
suitable for use as a battery anode material. The performance of hard 
carbon anodes can be enhanced by heteroatoms substituting for carbon 
atoms in the graphene layers. Doping of carbon atoms by heteroatoms, 
such as nitrogen, boron, phosphorous and fluorine and etc. with electron 
acceptor or donator capability, changed bond distances due to the 
substituted heteroatom, single or multiple doping and the total amount 
of heteroatoms in the carbon structure, can provoke disorder in the 
carbon structure and provide a higher number of point defects which 
may facilitate metal ion transport through modulated band structure of 
the graphene layers [259,260]. These modifications contribute to 
enhanced charge-carrier-transport kinetics by influencing the electronic 
conductivity [261,262]. 

However, the synthesis method for doping the graphene sheets in a 
defined way is the main determinant of whether the heteroatoms are 
incorporated into functional groups or directly into the graphene lattice. 
This, in turn, affects the final electronical and electrochemical properties 
[263]. Most of the biomass materials naturally contain inevitable het-
eroatoms such as N, O, P and K. The carbonization of biomass containing 
doping elements are performed at relatively low temperatures of 600‒ 
1100◦C. At higher temperature the doping level decreases dramatically. 
The formation of large amounts of defects and micropores in such a low 
temperature-treated hard carbons, hinders the crystallization of the 
hexagonal carbon structure (small La and Lc values) and finally increases 
the contribution of high-voltage sloping capacities in the voltage profile. 
Although, the interlayer spacing of graphite increases with some doping 
elements like P, which extends the low-voltage plateau capacity, while 
increasing the defect concentration with the doping element leads to 
higher sloping capacity. With an elevated carbonization temperature 
and a continued crystallization process to the ordered hexagonal carbon 
structure, the low-voltage plateau capacity becomes more prominent 
[264,265]. 

Table 1 lists the elemental composition of some types of biomass 
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including nitrogen, carbon, and oxygen, together with phosphorus oxide 
(P2O5). A more complete list for 86 biomass varieties is presented by 
Vassilev [266]. Despite the positive effect of heteroatoms on the elec-
trochemical performance of hard carbons, the attention should be paid 
to presence of unwanted impurities such as Al2O3, SiO2 and CaO and etc. 
in biomass which can have a negative effect on the anode performance. 
Hot washing and acid leaching can reduce the concentrations of alkali 
metals and alkaline earth metals. For example, animal bone is primarily 
composed of hydroxyapatite (HA, Cax(PO4,CO3)y(OH)) which can be 
removed with diluted hydrochloric acid. However, the removal of silica 
and alumina from biomass is more laborious [267,268]. The hard car-
bon derived from washed and unwashed pinecone biomass treated at 
1400◦C was reported to have a capacity of 328 mAh/g and 299 mAh/g 
vs. Na+/Na, respectively. After 100 cycles, a drop-in plateau capacity 
was observed for the unwashed sample. This decay was explained by the 
sodium-ion-insertion process being hindered by impurities that occupy 
some active sites [102]. 

3.2.1. Nitrogen doping 
Nitrogen, owing to its higher electronegativity of compared to car-

bon with 2.5 increases the repulsive interaction between carbon layers 
and enlarges the interlayer spacing, which is expected to improve Na+

ion battery performance [269,270]. It has been reported the carbon 
doped with electron donors such as N exhibit greater conductivity than 
that of carbon doped with electron acceptors [271]. Nitrogen doped into 
graphene exists in three main bonding configurations: pyridinic, pyr-
rolic, and as graphitic nitrogen. The high-resolution N1s XP spectrum of 
nitrogen-doped carbon derived from bamboo was fitted with four 
different species with binding energies of 398.8, 400.3, 401.5, and 403.7 
eV. These correspond to pyridinic nitrogen, pyrrolic nitrogen, graphitic 
nitrogen (the most stable nitrogen species after carbonization), and N-O 
bonds, respectively [272]. Graphene doped with electron-rich graphitic 
N due to electrostatic repulsion between N and Li shows more efficient 
delithiation while pyridinic and pyrrolic N formed at the edges and 
defect sites promote the perpendicular diffusion of Li. It is known that 
pyridinic N (sp2-hybridization) bonded with two carbon atoms and 
pyrrolic N with sp3-hybridization can create defects to provide active 
sites for alkali-metal ion storage. With an increasing pyrolysis temper-
ature up to 1100◦C, the specific capacity decreased congruently with the 
content of the pyridinic nitrogen. This behavior indicated the signifi-
cance of a high nitrogen content for the realization of high performance 
LIBs [273]. Graphitic N (sp2hybridized) bonded with nitrogen atoms, 
which substitute carbon atoms in the hexagonal structure, can enhance 
the conductivity of carbon [274]. This property is explained by the 
engagement of one electron in the formation of a π bond while the other 
electron is partially localized in the π*-state of the conduction band. 
(Fig. 11 (a)). In a nitrogen-doped graphene layer, pyridinic N and pyr-
rolic N donate one and two electrons, respectively, to the π-system of the 
carbon to give the carbon network a partially negative charge, which 
enhances the electrochemical activity for Na and K-storage. However, in 
these two structures the Fermi level is shifted slightly to the valence 
band since the defects impose the p-type effect by withdrawing electrons 
from the graphene sheet. 

The materials with high protein content, such as soybeans [275], 

bean shells [92], egg white [276], ginkgo leaves [277], human hair 
[278], chitosan [279], catkin [280], grass [281], and typha orientalis 
[136] can yield carbon with high nitrogen content. In plants, N con-
centrations are expected to be higher in the leaves than in the roots 
[282]. Nitrogen in biomass varies usually from 0.1 to 12 wt.% and, in 
general, the highest and lowest N contents in biomass have been 
observed in animal waste and wood, respectively [266]. Biomass with a 
protein concentration of approx. 50 wt.% can contain nitrogen between 
8 and 10 wt.% [283]. The chemical-activation process and carboniza-
tion temperature are the two main factors that define the N-content in 
carbon. Increasing the temperature and including an activating agent, e. 
g. to reach a porous structure and high specific surface area, can 
significantly decrease the N content. Therefore, it is quite challenging to 
design carbon that simultaneously possesses high surface area, high N 
content, and partially graphitized structure [284]. 

Sun et al. [285] used pomelo peels to produce carbon with a high 
surface area, a uniform mesoporous structure, and an ultra-high nitro-
gen doping level of 14.51 wt.%. Li et al. [137] also succeed in obtaining 
hierarchical mesoporous carbon from eggs, with a surface area of 806 
m2/g and a bulk N-content of 6 wt.%. This carbon exhibited a reversible 
discharge capacity of 1780 mAh/g at 0.1 A/g as LIB anodes. Hou et al. 
[205] reported a reversible Li-storage capacity of 1865 mAh/g at 0.1 
A/g for hierarchical porous nitrogen-doped carbon derived from silk 
with nitrogen contents of 4.7 wt.%. Yang et al. [127] demonstrated that 
the carbonization of okra, followed by an exfoliation process, led to 
carbon with nitrogen content of 9.89 at%. The carbon exhibited high 
specific capacity of 292 mAh/g and extremely long cycle life exceeding 
2000 cycles vs. Na+/Na. 

Due to improvement in the electrical conductivity and wetting 
behavior of the electrode/electrolyte contact [286], N-doped carbons 
can also give high rate capabilities, along with long-term cycling sta-
bility. Chen et al. [257] showed the pretreatment of wheat straw as raw 
material with HCl, followed by an activation by KOH during the 
carbonization process, resulted in the successful fabrication of 
nitrogen-doped porous carbon with thin pore walls. Such carbon, owing 
to the content of nitrogen up to 5.3 wt.%, exhibits high specific capacity, 
long-term stability of 976 mAh/g at 0.37 A/g after 300 cycles and, in 
particular, ultra-high rate capability of 198 mAh/g, even at a current 
density of up to 37 A/g vs. Li+/Li. 

Disordered nanocrystalline carbon fibers extracted from lignin 
possess low flexibility if they are not mixed with any synthetic polymer, 
which causes unstable rate capacity and poor cycling performance 
[287]. Higher molecular weight lignin also showed enhanced graphitic 
structure with improved mechanical properties [288]. Tenhaeff et al. 
[289] reported that the lignin carbon extracted from hardwood and 
treated at 2000◦C showed a specific capacity of only about 100 mAh/g at 
a current density of 0.015 A/g over 40 cycles. In recent years, studies 
have reported the development of nitrogen-doped lignin as a precursor 
for carbon with high stability against electrolytes at low potentials and 
improved energy/power performance [290–292]. Zhao et al. [293] 
showed lignin-derived nitrogen- doped carbon delivered a high cyclic 
stable capacity up to 225 mAh/g at a current density of 0.06 A/g after 50 
cycles. Nitrogen can be doped artificially into carbons especially those 
extracted from lignin-enriched biomass [294] via chemical vapor 
deposition [295], thermal annealing in NH3 [296], N2 plasma treatment 
[297], alkaline treatment [294], an arc-discharge method [298], or 
mechanochemistry [299]. 

Mechanochemistry entails the induction by mechanical energy (i.e. 
grinding, milling, ultrasonication, etc.), which enables reactions by 
reducing the particle size, breaking chemical bonds, and creating new 
surfaces. Because of the relatively simple procedure and, in most cases, 
substantially reduced post-reaction treatment, this synthesis method is 
regarded as cost-effective and efficient for promoting chemical reactions 
between solids without the need for solvents. Schneidermann et al. [299] 
have reported the synthesis of nitrogen-doped carbon using a mixture of 
lignin, urea, and K2CO3 with a mechanochemical process. The mixture 

Table 1 
Chemical composition of four groups of biomass [266]  

Biomass group N (wt. 
%) 

P2O5 * 
(wt.%) 

C (wt. 
%) 

O (wt. 
%) 

Enriched 
in 

1. Wood 0.4 3.5 52.1 41.2 CaO, SiO2 

2. Herbaceous and 
agricultural crops 

1.2 6 49.3 42.9 K2O, SiO2 

3. Aquatic biomass 2.2 9.8 43.2 45.8 Na2O, SO3 

4. Animal waste 9.2 28.2 58.9 23.1 CaO, P2O5   

* Chemical ash composition 
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was milled in a zirconia vessel for 30 min, and the product was pyro-
lyzed in nitrogen at 800 ◦C for one hour. 

The accurate control on nitrogen content and the ratios of different 
types of nitrogen species in some nitrogen-rich biomass are difficult. 
Enabling the desired nitrogen content and its homogeneous distribution 
in biomass-derived carbon, requires removal of nitrogen as gaseous ni-
trogen oxides (NOx) during pyrolysis. This results in the formation of 
mesoporous and microporous structures. Then the carbon can be sub-
sequently doped with a desirable level of nitrogen by means of post- 
treatments in the presence of various nitrogen sources such as 
ammonia (NH3), urea, and nitrogen gas (N2). These structures are 
beneficial to enhance the electronic conductivity of carbon [273]. 

3.2.2. Boron doping 
Doping with boron improves graphitization by increasing the inter-

lamellar spacing Lc and La. As shown in Fig. 11(b), B-C σ-bonds are 
considerably polarized owing to the larger electronegativity of carbon 
with respect to boron, which induces a positive charge of 0.56 e in the 
boron atom [300]. The larger bond distance of B-C (1.48 Å) than that of 
C-C (1.41 Å) increases La [301–304]. Indeed, boron, with a lower elec-
tronegativity (2) than carbon, removes π electron density in the gra-
phene layers, which reduces the repulsion between the graphene layers. 
B substitution creates an electron-deficient lattice because of the for-
mation of trigonal coordination with sp2-hybridized bond character. The 
three bonds tend to increase the in-plane local defects in the carbon 
structure and therefore make it facile to accommodate for extra elec-
trons [223]. Graphene doped by electron accepting dopants like B shows 
different electronic properties compared to graphene doped by electron 
donating dopants such as N as revealed by the higher conductivity of the 
N-doped graphene. With boron doping electron holes are generated 
acting as a trap for free electrons. In the consequence, a strong decrease 
of free carrier mobility and conductivity is recognized [271]. 

As boron is not an element typically involved in plant growth it needs 
to be added before the pyrolysis. Boron is blended by using boric acid 
[305], ammonium hydrogen borate [306], or triethyl borate [307], and 
substitutes carbon atoms in the graphene layers. The binding energy of 
B1s in XPS for boron substitution in the carbon lattice shows a peak 
ranging between 186.9 and 188.8 eV [308]. Additionally, the various 
boron oxides and carbides (BC2O, BCO2, B2O3, and BC3) formed on the 
carbon surface have B1s peaks ranging from 189.0 to 193.2 eV [309]. 

Endo et al. [310] observed a B1s signal near 190 eV which is related to 
formation of boron nitride and BCxN sites. They reported that the for-
mation of these compounds is followed by a reduced Li insertion ca-
pacity compared to pure boron doping. Nevertheless, B can also stabilize 
Li+ ions and, therefore, prevents the clustering of Li species. By easily 
transferring the Li 2s electrons to BC3, with the electron density mainly 
concentrated on the B atom (due to p-type behavior), and filling the 
usually empty pz state of the B atom, BC3 binds stronger to Li in com-
parison with graphite. BC3 sheets can provide a specific capacity of 857 
mAh/g, which is 2.3 times higher than for graphite. However, due to 
presence of in-plane local defects, parallel diffusion of Li+ ion to plane 
can be less efficiently [179,311]. Endo et al. [310] also reported an 
occupation of Li insertion active sites, such as edge-type sites, in the 
carbon layers with B that inhibited the Li insertion process and reduced 
the charge capacity of the boron-doped samples. 

B-doped carbon is also a highly promising candidate as a sodium 
storage material. Owing to the electron acceptor effect of the boron in 
the carbon lattice, the Na and Li insertion starts at higher voltage of 
about 0.92 V and 1.2 V for B-doped graphene sheet. However, we should 
note that any oxygen in the hard carbon could increase the voltage up to 
even 2.52 V [223,312–314]. By doping B in the carbon structure, the 
positive binding energy between the graphene sheet of the hard carbon 
and Na changes to a negative value. B3+ transfers three electrons to the 
graphene sheet, which leads to strong interaction between the Na atoms 
and the graphene sheet in the vicinity of the B atoms. Another reason for 
this strong ionic interaction could be found in the p-type property of 
boron, which could easily accept an electron from the sodium atom 
while it is weaker at e.g. electron-abundant N-substitution sites. All 
these properties of boron direct the charging and discharging electro-
chemistry to the slope capacity rather than the plateau capacity. The 
high binding energy between the B-sites and the Na+ ions caused a 
reduction in Na+ ions motion and trapped Na+ ions in the carbon 
structure that led to an extremely low potential plateau and a high 
irreversible capacity in the first cycle [223]. However, the first-cycle 
Coulombic efficiency could increase by decreasing the specific surface 
area of the hard carbon to less than 8.0 m2/g [223]. Another study 
subjected to potato starch, the boron-doped carbon was prepared in a 
two-step hydrothermal reaction and carbonization with a yield of about 
2 at.%. The electrochemical performance showed the high reversible 
specific capacity of 964 mAh/g at a current density of 0.2 C. The carbon 

Fig. 11. A schematic of various types of bonding configurations of a) N [180],[344],[345], b) B [346], c) P [346], and d) F [347] atoms within the hexagonal lattice. 
Adopted from mentioned references after the required permission. 
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also exhibited a good cycle ability with a specific capacity of 
356 mAh/g after 79 cycles at a current density of 0.5 C vs. Li+/Li [315]. 

3.2.3. Phosphorous doping 
P–C bonds could enhance electrical conductivity by increasing the 

electron density around the Fermi level [316]. In contrast with boron, 
phosphorous atoms maintain their sp3-configuration. Because of its 
large atomic size, phosphorous usually avoids substituting for carbon in 
the graphene layers and prefers edge sites instead [174]. Nonetheless, 
phosphorus forms a quasi-trigonal pyramidal coordination with carbon 
atoms with P-C σ-bond lengths of 1.76 Å. The higher length of P-C (1.54 
Å) than that of C-C forces phosphorous atoms to locate out of the plane. 
TEM studies also confirm the short and curved graphene layers in 
P-doped hard carbon. This protrusion is driven by the rehybridization of 
pz states of the vacant C sites toward the stabilization of the P-C system, 
which results in larger charge transfer between the P and C atoms as 
compared with e.g. the N-C system [199] (see Fig. 11(c)). Although P 
shows similar chemical properties as N, doping the carbon matrix with P 
shows a higher electron-donating ability and stronger n-type behavior 
compared to the N-doping [317]. Jeon et al. [318] reported doping of 
carbon with non-metal elements with an electronegativity <2.55 like P. 
Donating electrons to the C atoms and the low electronegativity, like in 
the case of P doping, causes stronger interaction of an intercalated metal 
ion compared to N-doped graphite. P-doping not only improved the 
capacitive performance, it also resulted in an enhanced energy density 
compared to the respective N-doped carbon. 

The P2O5 content of biomass varies from 0.2‒41 wt.% and its content 
is highest in animal waste and agricultural residues [266]. Phosphorous 
is usually doped into carbon with the help of phosphoric acid [319], 
triphenylphosphine [320], ammonium phosphate [321], monosodium 
phosphate [322], etc. 

Lu et al. [323] succeeded in P doping into cotton-derived carbon that 
led to the weakening and breaking of C=O and partially C-O bonds as 
referred to the change in the XPS contributions at binding energies of 
533.1 and 532.0 eV, respectively. The phosphorous atoms were inserted 
into the C-O bonds to form C-O-P groups. The doped material delivered a 
reversible capacity of up to 242 mAh/g at 0.05 A/g, excellent rate ca-
pabilities of 123 mAh/g at a high current of 1 A/g, and long-term cycle 
life with ~88% capacity retention after even 600 cycles. Electro-
chemical impedance spectroscopy (EIS) and galvanostatic intermittent 
titration technique suggested that P-doping caused the decrease of the 
charge-transfer resistance alongside drop in contact angle and improved 
of Na+ ion migration kinetics as deduced from ref. [324]. 

Ji et al. annealed a mixture of H3PO4 and sucrose to obtain POx- 
doped hard carbon as an anode material, which improved the capacity 
of un-doped carbon from 283 to 359 mAh/g. The more intense signal of 
phosphorous oxides at 134.5 and 133.1 eV positions than that for the P-C 
bond at 131.0 eV points to the presence of oxygen atoms in most of the 
doped phosphorus species. Although POx as a redox inactive agent could 
not contribute to the higher capacity, but caused an enlarged 002) d- 
spacing and domain defects, which finally resulted in plateau and slope 
regions that were shifted to higher potential profile values [325]. This 
larger d-spacing enables a vital Na-ion transfer, as indicated by an 
increased sodiation plateau capacity that is much more pronounced than 
the slope capacity [223]. A lower sodiation voltage of ≈0.32 V was 
observed in the potential profile, which can be attributed to n-type 
behavior of the P dopant that could not accept an electron from the 
sodium as easily as B [223]. Additionally, a P− O bond in carbon changes 
the morphology and composition of the solid electrolyte interface (SEI) 
layer and is beneficial to the formation of a thin and dense SEI layer 
[326]. 

The high-resolution P2p spectrum for P-doped carbon deconvoluted 
into three peaks at C3PO (132.9 eV), C2PO2/CPO3 (134eV), and C3P 
(130.5eV). The spectrum showed that after co-doping with B, C3P in-
creases from 7.2 at. % to 22.8 at. %, which consequently results in a 
reduced irreversible capacity in SIBs [327]. Xing et al. [328] prepared 

phosphorus-doped sunflower-activated carbon with simple hydrother-
mal and calcination methods. They reported a reversible capacity of 
1000 mAh/g after 200 cycles at a current density of 0.5 A/g for LIB. 

3.2.4. Fluorine doping 
The crystal structure of graphite fluoride has gained great impor-

tance in improving the electrochemical performance of batteries [329]. 
Halogen atoms exhibit both the electron-withdrawing effect owing to 
the high electronegativity and the resonance-donating effect as a result 
of the existence of lone pair electrons [263]. Such influence causes the 
transformation of the sp2-carbon bond to the sp3-state. The high elec-
tronegativity induced by fluorine-doping enhances Na+ ion trans-
portation and storage by weakening the repulsive force for Na+ ion 
insertion and removal. This phenomenon reduces the energy barrier for 
Na+ ion insertion and offers more active sites for Na+ ion storage. 

Because of strong repulsion between the paired electrons of F and 
unpaired electrons of the unbonded adjacent carbon atoms, the F-C bond 
sticks out of the basal plane and stretches the C-C bond length to 
1.57~1.58 Å (Fig. 11 (d)) [330,331]. Increasing D and D′, broadening of 
the G, and decreasing 2D bands in Raman spectra show the disorder in 
the graphene layers which is further intensified by F-doping [332,333]. 
XPS analysis of the carbon spectrum after fluorine saturation at 50 at. % 
shows that a majority of the bonds are C− F, C− F2, and C− F3. Covalent 
bonds of C− F2 and C− F3 appear at binding energy levels higher than 
292 eV in the XPS spectrum, which confirms the formation of C− Fn at 
defects such as vacancies, free edges, or domain boundaries [332]. In the 
graphite fluoride (CFx) materials, the property of the C–F bond depends 
on the fluorine concentrations. For x < 0.1 the type of the bond between 
carbon and fluorine is ionic, located at 289.8 eV, which leads to an 
extremely high electrical conductivity of 2 × 105 S/cm. For higher 
fluorine concentrations the conductivity of the graphite fluoride de-
creases because of the formation of less ionic but more covalent C–F 
bonds, which were detected at 291.8 eV [334,335]. Indeed, the ionic 
bonding keeps the planar nature of the graphene planes, whereas the 
interaction of the p orbitals of F with the π orbitals and the introduction 
of a large strain into graphene planes pushes the carbon out of the 
graphene plane in covalent bonding [333,336]. Therefore, the covalent 
C–F bonds (bond length of 1.41 Å) consist mainly of sp3-hybridized C 
atoms and F atoms with a binding energy of 114 kcal/mole, whereas 
ionic C–F bonds CxF (bond length of 3 Å) with x > 3 mainly originate 
from sp2-hybridized C atoms bound to F atoms with binding energy of 13 
kcal/mole [333,337]. The semi-ionic C–F bond (bond length of 1.7 Å) is 
an intermediate state between covalent and ionic bond and has higher 
polarities than covalent C–F bonds, which result in higher positive 
charge on the respective carbon atoms, a larger graphite interlayer 
distance as well as a higher electrochemical activity than the covalently 
bonded ones [334]. In addition, semi-ionic C–F bonds with high (partial) 
electronegativity on the graphite surface accelerated the diffusion of Li+

ions in the charge/discharge process. Although the ionic nature of the 
C–F bonds is known to induce even higher electrical conductivity. It also 
offers an active site for the formation of the SEI and consequently in-
creases the irreversible capacity. C–F covalent bonds as strongest type 
among the C–F bonds, tend to irreversibly form LiF.  High covalent C–F 
bond ratio might destroy the conductive network of conjugate double 
bonds and finally reduces the discharge capacity [338]. This bond type 
also deforms the graphite surface structure which allows for the storage 
of excess lithium [339]. However, the presence of a negative charge 
(oxygen functionalities) and also the disordered lattice structure can 
hinder the formation of the semi-ionic C–F bond and LiF formation 
[340]. As the surface doping is more relevant for LIB, intercalation of 
fluorine to form semi-ionic C–F bonds is beneficial in the case of KIB as 
the graphene interlayer distance increased and enabled an elevated 
electrochemical performance [341,342]. 

The fluorine-doped carbon particles derived from lotus petioles for SIB 
deliver an initial charge capacity of 230 mAh/g at a current density of 
0.05 A/g. They also maintain a charge capacity of 228 mAh/g at 0.2 A/g 
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as well as a stable capacity of 126 mAh/g at a rate of 0.5 A/g for 300 
cycles. This electrochemical performance may be related to the higher 
electronegativity of fluorine (4) compared to carbon (2.6), which in-
creases the repulsive interaction between the carbon layer to interplanar 
spacing (0.41 nm), as well as the disordered structure [343]. F atoms 
have the highest electronegativity among all the elements, and, there-
fore, they induce the highest positive charge on carbon atoms. 

3.2.5. Metal-ion doping 
The low electronic conductivity of hard carbons and the slow 

transport of metal ions in the hard carbon electrodes during the 
discharge and charge processes originate from the different stacking 
orientations of few-layer graphene clusters. These two main obstacles 
hamper high rate capabilities in alkaline ion batteries. As intentional 
introduction of some metal elements into graphite as a dopant showed 
the doping metals can tune electronic properties, surface polarities and 
catalytic performances [348,349], hence a similar effect can be expected 
for hard carbons. 

Large anisotropy of electronic conductivity of pristine graphite at 
room temperature (σa axis:σcaxis>100) can be significantly modified with 
intercalation of electron donor species [350,351]. Introduction of alkali 
and alkaline-earth metals into graphite by increasing the in-plane and, 
especially, the c-axis conductivity, convert the two non-superconducting 
components to superconducting compounds. Alkaline and 
alkaline-earth metals are intercalated between the graphene layers 
based on their sizes [352]. Elements with smaller ionic radii like M = Li, 
Ca reach a stoichiometry of MC6, and for those with larger ionic radii 
like M = K, Rb, Cs the compound MC8 are expected to be formed as the 
final constituent. The classical synthesis method to intercalate the 
metals into interplanar graphite is the reaction of solid graphite with the 
vaporized metal at moderate temperatures in high vacuum. Due to high 
vapor pressure of K, Rb and Cs, these elements can easily intercalate into 
graphite at low temperatures to form crystallographically ordered 
compounds up to MC8. For smaller metals like Na due to their low vapor 
pressure, the intercalation into graphite is more challenging [353]. 
However, Na+ ions that are unable to intercalate into undoped and 
unexpanded graphite can intercalate into B-, P-, and Al-doped graphite. 
Transferring electrons from B, P, and Al dopants to graphite strengthens 
the ion-graphene electrostatic interaction and provides the thermody-
namic driving force for Na+ ion intercalation. The intercalation of Na+

ions into graphite increases in the order of N < B < P < Al, which is 
associated with the electronegativity of the dopant [318]. 

However, in spite of the weak vapor pressure of Li and its lower 
electropositive character than Na, Li intercalates into graphite surpris-
ingly easy. Li-graphite intercalation compounds (Li-GIC) showed less air 
stability compared to heavy alkali metal-GIC and rapidly decomposed. 
Electrical conductivity of Cs-GIC was estimated to around 5 × 104 S/cm 
after 10 years exposure to air [354]. 

In addition, less electropositive alkaline earth metals such as Ca, Sr 
and Ba with lower volatilities compared to alkaline metals incompletely 
intercalate into graphite and lead to the formation of mixtures of 
graphite and the intercalated product as these elements are usually 
carbide formers. However, Cahen et al. reported on the intercalation of 
Sr, Ba and Yb into graphite, using a LiCl–KCl molten salt as the reaction 
medium [355,356]. 

It was speculated that hard carbons with expanded graphite can be 
an effective alternative to the complex uncontrollable doping synthesis 
by metal vapors. However, due to cross-linking of the graphitic planes, 
alkaline metals cannot intercalate into non-graphitizable carbons sheets. 
Note, the enlarged interlayer spacing of alkaline intercalated graphite 
was observed in disordered carbon prepared from cellulose yarn and 
glassy carbon [357–361]. Shi et al. [362] also showed an accelerated 
rearrangement of the carbon during heating for amorphous carbon 
containing alkaline metals, during the penetration of molten alkaline 
metals into a porous carbon and by etching the O-containing surface 
groups. McNamara et al. [363] observed the important role of Cs on 

carbon ordering of polyfurfuryl alcohol-derived carbon which was more 
significant compared to other alkaline metals. Coconut endocarp 
derived carbon with an expanded d002 spacing of 0.4 nm originating 
from natural K-doped graphitic layers with K-contents of 6654 mg/kg 
showed a high initial reversible capacity of 314 mAh/g and a good cycle 
stability of 289 mAh/g after 200 cycles [364]. 

The low electronic conductivity of hard carbons can also be tackled 
by introducing transition metals into the hard carbon matrix to some 
extent to partially graphitize its structure [365,366]. Nevertheless, the 
intercalation of the low volatility transition metals into graphite is 
difficult, and in most cases impossible as carbide formation is preferred 
[355,367]. Therefore, it is expected for hard carbons like for graphite 
that the insertion of transition metals takes place rather than an inter-
calation. In contrast to the ionic character of the graphite− alkali metal 
bonds, transition metal atoms are covalently bonded within the gra-
phene layers. These strong covalent bonds cause large in-plane lattice 
distortions of the graphene layers [368,369]. 

An increase of the carbonization temperature and a faster activation 
process enhance the reorganization of disordered carbons and act as two 
main factors which favor a higher electrical conductivity of such a hard 
carbon [370]. However, transition metal dopants such as Cr, Fe, Co, and 
Ni can significantly decrease the graphitization temperature. Finding 
the transition metal with proper catalytic activity in carbon materials, 
mass ratio of hard carbon and transition metals and also selecting the 
optimum pyrolysis temperature of the metal-carbon composite plays an 
important role on the degree of carbon organization and on the resulting 
electronic conductivity. Additionally, introducing the first-row transi-
tion metal elements such as Co, Fe, Mn and Ni into carbon materials 
enhance capacitance and electrocatalytic properties of the respective 
carbon materials and can be selected as a promising alternative for the 
replacement of precious metals [371–374]. The ability of transition 
metals to act as a graphitization catalyst increases with its number of 
electron vacancies in the d-orbitals. Elements with fully occupied d-or-
bitals (e.g. Cu, Zn) are relatively inert in a reaction with carbon. Ele-
ments with partially occupied d-orbitals (e.g. Fe, Co) are effective 
carbon solvents. Elements with less occupied d-orbitals (e.g. Ti, V) are 
carbide formers [375,376]. 

Maldonado et al. [377] reported various degrees of hard carbon 
graphitization using different transition metals. The results showed that 
ID/IG ratio of 0.87, 0.99, 1.07 and 1.08 can be obtained when hard 
carbon is catalytically graphitized at 1000◦C by Cr, Ni, Fe and Co, 
respectively. However, by increasing the pyrolysis temperature to 
1800◦C, the order of graphitization changed to Cr (0.71) ˃  Fe (0.78) ˃  Co 
(0.96) ˃ Ni (1.01). Using Cr as a catalyst resulted in a decrease in the 
graphite interlayer spacing from 0.382 to 0.337 nm at 500 and 1800◦C, 
while, that of pristine hard carbon reduces to the minimum of 0.364 nm 
at 1800◦C. 

Araujo et al. [85] demonstrated among the transition metals of Fe, Ni 
and Cu, nickel acted more effective as the catalyst for graphitization of 
carbon derived from cotton and the degree of graphitization enhanced 
with increasing the temperature from 800 to 1200◦C. The electrical 
conductivity of catalytically graphitized carbon was determined using a 
four-point probe showing that Ni catalyst can increase the conductivity 
of graphitized carbon to 27.96 S/m which provides the best performance 
among other metal catalysts. The negative ζ-potential value for graph-
itized carbon with Fe and Cu catalysts showed the insertion of oxygen 
and nitrogen atoms into the graphite during pyrolysis. However, the 
positive ζ-potential value for the carbon with the Ni catalyst contribu-
tion resulted in a low-defected carbon material with less electronegative 
atoms in the graphite. 

A glucose-derived carbon, catalytically graphitized by Fe at 450◦C 
for 6 hours in Ar/H2, delivered a remarkable specific capacity of 167 
mAh/g at 1 A/g, and a cycling stability of 201 mAh/g at 0.5 A/g vs. Na+/ 
Na after 100 cycles [366]. Carbon derived from glucose without an 
additional catalyst exhibited only 70 mAh/g compared to that of 
graphitized carbon with a specific capacity of 420 mAh/g at 0.05 A/g in 
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the first cycle, which demonstrates the importance of the Fe catalysis 
during the carbon synthesis. Besides the catalytic effect of Fe, a larger 
size of the Fe nanoparticles leads to a smaller graphite interlayer dis-
tance and an increased stacking of the layers. Obrovac et al. [365] also 
reported on the reversible capacity obtained by Fe-catalyzed graphiti-
zation of sugar carbon at 1200◦C under a flow of argon. The high ca-
pacity of 366 mAh/g after 30 cycles at C/5 vs. Li+/Li is indicative of a 
high degree of graphitization and low turbostratic disorder. 

Hunter et al. showed a fast formation and growth of the Fe3C catalyst 
results in quicker graphitization for cellulose and glucose compared to 
starch. The presence of a large yield of disordered graphene sheets in 
carbonized starch blocks the mass transport of iron and thus restricts the 
growth of the Fe3C nanoparticles. Therefore, it takes longer for the Fe3C 
nanoparticles to reach the critical size needed for a significant contri-
bution to the graphitization [378]. 

3.2.6. Dual-doped carbon 
As already discussed in the previous sections (3.2.1-3.2.4), the dif-

ference in electronegativity between carbon atoms and heteroatom 
doping induces the charge distribution over the carbon network that 
alters the electrochemical performance of graphite. Therefore, it could 
be expected that synergetic effects of co-doping elements with higher 
and lower electronegativities than that of carbon could be much more 
pronounced than singly-doped carbon [301,379]. 

With the pyrolysis of hydrolyzed chicken egg yolk and Fe(NO3)3 up 
to 1000◦C in N2 atmosphere nitrogen- and phosphorous dual-doped 
nano carbon capsules were obtained [128]. The yolk contains nitro-
gen- and phosphorous-based compounds, which were reduced and 
substituted carbon atoms in the carbon structure. Subsequently, 
capsule-like carbon structures were formed by precipitation and 
graphitization of C on iron particles. Finally, Fe was removed by an acid 
treatment and hollow-structured carbon was obtained. High resolution 
C1s spectra were fitted with four species at binding energies of 284.7, 
285.5, 285.8, and 287.8 eV, which are attributed to sp2 C–C, C–P, C–N, 
and C–O bonds, respectively. This result suggests that dual doping of N 
and P atoms into the carbon occurs. Galvanostatic discharge/charge 
cycles for this dual-doped hollow carbon showed that the contribution of 
the specific capacity below 0.5 V corresponds to the intercalation of Li 
cations into the layer of the carbon shells. The capacity above 0.5 V was 
ascribed to the capacitive contribution on the outer/inner surfaces and 
edge planes of the capsule structure. However, no obvious voltage 
plateau was observed during the cycle suggesting a disordered stacking 
of the dual-doped carbon. The reversible capacity as high as 770 mAh/g 
at 0.5 A/g, with a rate capacity of 380 mAh/g at 15 A/g, supported that 
heteroatom doping provides additional Li intercalation sites beneficial 
for the electrochemical properties [128]. 

Corn husk doped naturally by nitrogen and oxygen treated by KOH 
solution delivered a reversible capacity 231 mAh/g at 0.1 A/g vs. K+/K. 
Moreover, at a high current density of 1 A/g, the reversible capacity still 
reached up to 135 mAh/g after 500 cycles. The results indicate that both 
capacitance and diffusion are responsible for the K-cation storage in 
battery [380]. Although oxygen may have a negative effect on the 
conductivity of the carbon network, it improves the wettability of car-
bon surface by the electrolyte to reduce the carbon inactive sites and 
offer more sites exposed for charge storage [381]. 

N and P have been successfully doped into carbon sheets derived 
from corn stalks via a hydrothermal reaction using (NH4)2HPO4 as the 
source of nitrogen and phosphorus. Since sp2 C–N and C–P may overlap 
with C–O contribution in C1s XP spectrum, and the sp3 C–N with C=O, 
information about successful doping of nitrogen and phosphorous into 
carbon sheets was obtained by fitting the high-resolution P2p XP spec-
trum. Three contributions were assigned to the intense parts of the signal 
at binding energies of 132.1, 133.1, and 133.6 eV. These energies were 
assigned to P–C, P–O, and P–N bonding, respectively. N and P as doping 
elements have been reported to improve electron conductivity and 
enable a higher electrolyte-surface-wetting ability of the carbon. This 

carbon delivered a specific capacity of 277 mAh/g after 100 cycles at 
0.25C and a specific capacity of 202 mAh/g after 200 cycles at 1C, as 
well as a stable specific capacity of 105 mAh/g at a high rate of 5C after 
2000 cycles. These results point to the excellent cycle stability and su-
perior rate capability of dual-doped carbon sheets derived from corn 
stalks [382]. 

Zhao et al. [383] used density functional theory (DFT) calculations to 
predict the behavior of N doping in a P-doped carbon. P bonded to 
carbon in two modes, outside the carbon surface or inside (means doped 
into the carbon surface) (Fig. 12 (a-b)). The inside mode caused a 
distortion of the 2D carbon framework. P bonded to carbon according to 
these two modes decreased the formation energy Ef of graphitic N to 
0.14 eV for the outside mode and 0.32 eV for the inside mode, as 
compared with un-doped carbon with an Ef of up to 0.40 eV. However, in 
substitution mode the calculated adsorption energy (Eads) of nitrogen 
(5.68 eV) directly on the doped phosphorous site showed that nitrogen is 
easily adsorbed on the un-doped carbon with an adsorption energy of 
3.68 eV. In this way, the new N–C bonds are formed and replace the 
former P–C bonds which are elongated and significantly weakened after 
N adsorption (Fig. 12 (c)). 

Zhang et al. [384] evaluated the electrochemical behavior of 
K-storage and Na-storage for high-N-content carbon nanosheets after 
introducing P to their structure by annealing with NaH2PO4. When used 
as an anode in KIBs without P doping, the nanosheets showed a higher 
specific capacity of 238 mAh/g at 0.1 A/g than the nanosheets that were 
doped with P, which had a specific capacity of 207 mAh/g at 0.1 A/g 
after 250 cycles. However, a higher Na-storage capacity of 246 mAh/g 
after 100 cycles at 0.1 A/g was obtained for P-doped nanosheets. 
Un-doped nanosheets delivered 175 mAh/g sodiation capacity under the 
same conditions. The Na+ and K+ ion diffusion coefficients measured by 
GITT demonstrated that the introduction of P to N-rich carbon nano-
sheets improves the Na+ ion diffusion coefficient and lowers the K+ ion 
diffusion coefficient [384]. 

Shanmugam et al. [385] described the interaction between the 
alkali-metal ions and doped graphene sheets to be mainly influenced of 
an ionic character. The adsorption energies of Li, Na, and K cations on 
B/N co-doped graphite sheets were found to be -2.66 eV, -1.88 eV, and 
-1.49 eV, respectively, and the adsorption of the metal ions increased by 
introducing defects into the graphite sheet [385]. It is notable that the 
doping and divacancy (DV) defect created by removing two carbon 
atoms was able to better adsorb alkali metals as compared with the 
defects that arose from structural arrangement of carbon atoms 
(stone-Wales (SW) defects) [386]. However, it has been reported that 
N-doping sites, not C defects, are the source of improved capacities in 
KIBs, whereas Na+ ion storage is mediated by defects [387]. 

3.3. Biomass-derived carbon composites 

As compared to graphite [388], hard carbon has severe voltage 
hysteresis proportional to the hydrogen content [121] and lower elec-
tronic conductivity arising from inhomogeneous potential/current dis-
tribution, which restricts its commercialization for application in 
batteries. Surface functional groups and/or heteroatoms (such as O, N, P 
and B) are one solution to by-pass these drawbacks, as described in 
Section 3.2. Here, we propose another solution to address the challenges 
of hard carbons for battery applications. To meet high-performance hard 
carbon anodes, conductive materials such as graphite and soft carbon or 
high-capacity materials such as metals and alloy nanoparticles are 
coated on the defective hard carbon to improve the connectivity be-
tween carbon atoms and enhance charge carrier transport, especially for 
the electrons. While direct mixing of higher conductive material and 
hard carbon can cause phase separation due to different densities, the 
partial embedment of metal and alloy nanoparticles, nitrides, oxides, 
and carbides, or ceramic composites, in the pores of hard carbons can be 
efficient. This process leads to extra space on the hard carbon surface, 
thereby buffering the volume expansion of the metals upon cation 
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insertion and effectively hinders the aggregation of alloy particles. For 
example, Lian et al. [389] reported that the embedment of 26.7 wt.% 
Ni-doped CoS2 nanoparticles (Ni0.5Co0.5)S2 in a yeast-derived hard 
carbon improved the conductivity and led to a capacity of 600 mAh/g 
vs. Li+/Li at 0.5 A/g after 450 cycles. 

Pinning of Sn-Sb onto the surface of a hard carbon can help improve 
the carbon properties and allow it for an application as an anode ma-
terial [390]. After Li insertion and the formation of multiple phases like 
Li3Sb and LixSn (x < 4.4), the separated phases can be restored to the 
original Sn-Sb alloys after Li removal. Filling the carbon micropores with 
Sn-Sb alloys may act as the “root” for outer, larger alloy particles that 
help to firmly root the nanoalloy particles on the surface of the hard 
carbon particles. Li et al. [390] pinned 29.8 wt.% nanosized Sn-Sb alloys 
onto a hard carbon surface. They reported that the surface areas of both 
alloy and carbon exposed to the electrolyte decreased. The specific 
surface area of hard carbon after Sn-Sb pinning reduced from 400 to 159 
m2/g, which could explain the improvement of the Coulombic efficiency 
after the first cycle. In the voltage profile, the Li-storage behavior 
showed four regions during the Li insertion process: (1) a slope ranging 
from 1.1 to 0.8 V, attributed to the decomposition reaction caused by a 
small amount of surface oxide on the nano-SnSb; (2) the plateau at 0.8 V 
related to the alloy reaction of Li with Sb; (3) the smooth slope from 0.7 
to 0.2 V corresponding to multistep Li-Sn alloy reactions and the 
insertion reaction of Li into the non-graphitic carbon; and (4) a plateau 
from 0.1 to 0.0 V related mainly to the insertion of Li into the micropores 
of the hard carbon. 

Yang et al. [391] reported a minimal agglomeration of Co3O4 
nanoparticles during Li insertion by embedding as well as pinning them 
into the porous sugar-derived hard carbon. They recognized that the 
desquamating possibility of Co3O4 during cycling increased by pinning 
29.7 wt.% Co3O4 into superficial pores without embedding them into 
deeper pores. Combining the advantages of a high lithium storage ca-
pacity of Co3O4 and the structural stability of a hard carbon enabled a 
composite anode material with specific capacity of 403 mAh/g after 35 
cycles vs. Li+/Li. The nanosized Co3O4 particles embedded in a hard 
carbon during Li insertion reduced first to the intermediate product 
α-CoO and subsequently to Co. The researchers suggested that the 
addition of nanosized Co3O4 particles encouraged the reversible Li+ ⇄ 
LiOx reaction, which finally led to a higher initial Coulombic efficiency. 
Therefore, a simple combination of Co3O4 and a hard carbon was able to 
deliver a reversible capacity of 157 mAh/g after 10 cycles. 

Guo et al. [392] suggest that a soft-carbon coating protects 
nano-sized Sn particles embedded in the mesopores of sugar-derived 
hard carbons against oxygen and improves the electrical conductivity 
of the final composite. They reported that the good cycling performance 
with a specific capacity of 400 mAh/g vs. Li+/Li after 30 cycles resulted 
from the embedding of nano-Sn particles in the mesopores of carbon, 
which prevented its agglomeration during Li insertion. In addition, Sn 
nanoparticles significantly contribute to the high specific capacity by 
inducing the SEI film decomposition, and here especially of the Li 

carbonates, at a voltage lower than 3 V which reduces ineffective side 
reactions and improves the Coulombic efficiency [392]. 

Fig. 13 illustrates the synthesis of TiN and TiC coated on hard carbon 
as undertaken by Cheng et al. [393]. In this study, nanocrystalline 
composites of TiN and TiC coated on the surface of hard carbon were 
synthesized by the reaction of cotton wool with TiCl4, followed by firing 
at 1400◦C in nitrogen and argon. The hard carbon (HC)-TiN composites 
with 15.15 wt.% TiN showed better performance than that of HC and the 
TiC-HC composite with 8.65 wt.% TiC. After 50 cycles, HC, TiN/HC, and 
TiC/HC composites had reversible capacities of 216 mAh/g, 242 mAh/g, 
and 187 mAh/g vs. Na+/Na, respectively. According EIS measurements 
after 50 cycles, HC became more resistive (Rct = 296 Ω) than the TiN/HC 
composite (Rct = 105 Ω). The authors concluded that the higher elec-
trochemical performance of the TiN/HC was related to an enhanced 
charge transfer kinetics imparted by the highly conductive TiN coated 
on the surface of the hard carbon. The weak cycling behavior of the 
TiC/HC composite originated from its low ability to participate in sur-
face conversion reactions because of its larger crystallite size of 314 Å 
than that of TiN/hard carbon composite [393]. 

Jian et al. [394] reported mixing the hard carbon with 20 wt.% soft 
carbon could improve the hard carbon electrochemical performance as 
anode in KIBs. A ball-milled mixture of a hard carbon and a pyrolyzed 
soft carbon delivered higher rate capability and long-term cycling of 
~200 mAh/g at 1C after 200 cycle compared to 160 mAh/g for pure 
hard carbon. The soft carbon with superior rate capability and electronic 
conductivity compared to the hard carbon was responsible for this 
improvement. Integrating a hard carbon with high long-term cycling 
performance and a soft carbon with great rate capability could provide 
an anode material with highly amenable performance in KIBs. 

On the other hand, the volume expansion of active metals and alloys 
during electrochemical processes need to be reduced to improve the rate 
capability of a metal/graphite composite. Therefore, the preparation of 
a hard carbon-coated metal/graphite composite becomes necessary. The 
outside layer protects the electrolyte from the highly reactive inside 
particle e.g. of an oxide or an alloy. The electrolyte would be continu-
ously decomposed in case the core particle allocatesfreshly formed 
surfaces to the electrolyte, as often recognized for materials undergoing 
large volume changes during cycling. For instance, hollow graphene- 
encapsulated Si particles of Nie et al. [395] delivered a remarkable rate 
capability of 890 mAh/g at 5 A/g and a good capacity retention over 200 
cycles. Indeed, empty spaces in such a yolk–shell structure are capable to 
accommodate the volume expansion of Si during lithiation, reducing 
disintegration of Si particles and capacity fading. 

Fig. 14 schematically illustrates the synthesis of the hard carbon- 
coated nano-Si/graphite composite [396] consisting of silicon nano-
particles (14.6 wt.%) coated with a hard carbon (39.6 wt.%) and 
graphite (45.8 wt.%) composite showed a reversible specific capacity of 
879 mAh/g with an excellent stability of 738 mAh/g after 150 cycles at 
0.12 A/g vs. Li+/Li. The Si nanoparticles were closely connected to the 
graphite matrix owing to the hard carbon, which had considerable 

Fig. 12. Schematic illustrations of the orientation effect of the initially doped phosphorous on the later doped nitrogen; a) Outside mode, b) Inside mode, and c) 
Substitution mode [383]. Adopted from the mentioned reference after the required permission. 
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influence on fast electron transport during charging and discharging. In 
addition, the hard carbon layer played a significant role in buffering the 
silicon volume changes, which can reach up to 400% during electro-
chemical reactions with Li [396]. 

Fig. 15 displays the voltage profiles of uncoated and amorphous- 
carbon-coated Sn nanoparticles. The uncoated Sn nanoparticles deliv-
ered a higher charge capacity of 950 mAh/g, but only for one cycle. 
Following this, the capacity faded rapidly to reach values below 100 
mAh/g after 30 cycles. The carbon-coated Sn nanoparticles reached 
almost 800 mAh/g in the initial discharge cycle, but the specific capacity 
decreased between 600 to 700 mAh/g for the interval between the 5 and 
50th cycles [397], related to Li+/Li. These results indicated that the hard 
carbon acted as a proper “buffer- zone” for the volume change of LixSn. 

To improve the rate capability and reversibility of Li intercalation/ 
de-intercalation on the graphite surface, hard carbon materials were 
coated onto the graphite [398]. The porous and disordered hard carbon, 
with a different weight ratio to graphite, contributed most to the elec-
trochemical performance of the final composite. The nitrogen phys-
isorption results showed that the specific surface area of the obtained 
composites decreased gradually with increasing hard carbon content. It 
reported, the composite with 30 wt.% hard carbon exhibited a higher 

initial capacity of 374 mAh/g at 0.1 C than that of the composite with 10 
wt.% hard carbon, which had a capacity of 365 mAh/g at the same 
current rate. However, after 100 cycles the specific capacity reversed, 
and the lower hard carbon content of the composite became advanta-
geous, with a specific capacity of 349 mAh/g as compared with that of 
the composite with high hard carbon content, which was 340 mAh/g. At 
higher current rates, from 0.5 to 2C, the specific capacity of the com-
posite with 10 wt.% hard carbon also exceeded that of the composite 
with higher hard carbon content. This improved capacity was probably 
due to superior conductivity of composite with lower hard carbon 
content. GITT experiments revealed an undesirably slow Li+ ion diffu-
sion in composite with 30 wt.% hard carbon because of the enhanced 
interface distance and reduced electrical conductivity. DLi

+ values of 1.47 
× 10− 7 cm2/s and 1.71 × 10− 7 cm2/s were calculated for carbon content 
of 30 wt.% and the 10 wt.%, respectively. By increasing the current rate 
to 3C, the charging capacities of the composite with higher hard carbon 
content improved, which confirms that high content is critical for 
reaching high-rate performance [398]. 

Fig. 13. Schematic illustration of the synthesis process to fabricate hard carbon (HC)-TiN and HC-TiC composites and the morphology of the preparation-related 
composites. Adapted from ref. [393] with permission. 

Fig. 14. Illustration of the synthesis of the interconnected hard carbon-coated nano-Si/graphite (HC-nSi/G), a and b) Low and high magnification SEM images 
showing the hierarchical structure of the HC-nSi/G composite. Adopted from [396] after the required permission. 
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4. Electrochemical performance of biomass-derived carbon 
compared to graphite in lithium-, sodium-, and potassium-ion 
batteries 

4.1. Cation intercalation into graphite and hard carbon 

In LIBs, the intercalation of Li+ into graphite involves one Li per six C 
atoms with the theoretical capacity of 372 mAh/g. However, in SIBs 
Na+, because of its larger ionic radius of 102 vs. 76 pm of Li+ and its high 

ionization potential of 5.14 eV, only allows for the reversible formation 
of NaC64 with a theoretical capacity of 35 mAh/g [399,400]. Li–C bonds, 
because of their non-negligible covalent portion, result in a more stable 
intercalation of Li into the graphite layers than that of Na into graphite 
[401]. The bonds between Na and graphite are weak. In addition, there 
are large changes of the stretched C–C bonds after Na insertion [402] 
into the graphite layer and the enthalpy of the formation of NaC8 is 
positive [403]. As a result, the intercalation of Na+ ions into the gra-
phene layer is more difficult than for of Li+ ions [404]. The intercalation 
of K+ ions is even more difficult, given that their ionic radius is even 
larger than that of Na+. Nevertheless, KC8 is formed during potassiation 
by an exothermic process with a formation enthalpy of -27.5 kJ/mol 
[405], which is lower than even that associated with the formation of 
LiC6, and causes a higher average intercalation voltage (See. Fig. 16 (a)). 

For an efficient intercalation of Na+ ions into the graphite structure, 
the interlayer distance must be modified. Two main strategies have been 
reported for applying graphite as the intercalation anode material in 
combination with the sodium battery chemistry. The first strategy in-
volves a modified Hummers method typically used for graphene prep-
aration. Here, the purified graphite was oxidized and was then treated 
with heat to obtain partially reduced graphite. As a result, the interlayer 
distance was enlarged to 4.3 Å and the final half-cell battery delivered 
the reversible capacity of 284 mAh/g at a current density of 0.02 A/g 
[409]. The second strategy is to co-intercalate a solvation shell along 
with the Na+ ion. This strategy leads to the formation of a ternary 
graphite intercalation compound (t-GIC) with the general formula Na 
(solv)nCx [15] (Fig. 16 (b I)). Thus, graphite undergoes a reversible 
Na-storage through the intercalation of solvated-Na+, which results in a 
high amount of intercalated Na reaching the stoichiometry of about 
NaC18–20 [410]. In the case of Li+ ions, the intercalation of solvated Li+

occurs for highly concentered propylene carbonate (PC), dimethyl 
sulfoxide (DMSO), and ether electrolytes. However, the t-GIC – espe-
cially in propylene carbonate-based electrolytes with low concentrations 

Fig. 15. Plots of a) the voltage profiles of the Sn nanoparticles, and b) with an 
amorphous carbon coating. Adopted from [397] after the required permission. 

Fig. 16. a) Schematic of binary intercalation of Li, Na, 
and K ions into graphite and reduced graphene oxide 
(RGO). Li and K cations can intercalate into both 
graphite and RGO, while Na cations can only interca-
late into RGO [406], b) Schematic of ternary interca-
lation of solvated Li and Na cations into graphite: (I) 
Intercalation of solvated Na+ ions in Na half-cells with 
1 M NaFSI/tetraglyme (TEGDME) electrolyte [407], (II) 
Li+ ions intercalate reversible in EC-based electrolytes, 
whereas the intercalation of solvated Li+ ions occurs for 
highly concentrated PC, DMSO, and ether electrolytes. 
(III) Sometimes, in dilute electrolytes, the intercalation 
of solvated Li+ ions is accompanied by the exfoliation 
of the graphene layers [408]. Adopted from mentioned 
references after the required permission.   
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of the conducting salt LiPF6 – is instable against the oxidation and 
decomposition of co-intercalated solvent molecules. This instability 
eventually leads to the exfoliation of the graphite, with a negative effect 
on the cycling performance of LIBs (Fig. 16 (b II)) [408,411–413]. 

Organic solvents only poorly dissolve Na+ ions compared with Li+

ions, which leads to different amounts of solvent-Na+ co-intercalated 
into graphite in various electrolytes [410,414]. Flexible linear ethers 
exhibit the most satisfactory electrochemical performance as electrolyte 
solvents for graphite [410]. Ethers with longer chain lengths trigger a 
higher Na-storage potential. In the case of well-solvated and, thereby, 
efficiently shielded Na+ ions, longer ether chains weaken the unfavor-
able interaction between the Na intercalant and the graphite. As the Na 
intercalant is positively charged, longer chains of the ether solvate 
molecules attenuate the repulsion force among these positively charged 
intercalants. In addition, since the interlayer distance in graphite in-
creases owing to the co-intercalation, the repulsive interaction between 
the negatively charged graphene decreases as well. Therefore, as the 
thermodynamic stability of the t-GICs increases by longer ether chains, 
the average co-intercalation voltage increases proportionally 
[415–417]. 

In addition to the formation of thermodynamically more stable dis-
charging products, ether-based solvents with increasing chain length, 
such as diethylene glycol dimethyl ether (DEGDME), dimethoxyethane 
(DME), and tetraethylene glycol dimethyl ether (TEGDME) present 
another advantage. According to the this specified properties, a 
reversible capacity of ~150 mAh/g at a Na+ ion storage potential of 0.6 
V were reached for DEGDME as compared with the potential of 0.78 V 
for longer chain molecules of TEGDME [417]. Moreover, as the long 
chain ethers were inert against a reaction, only a thin SEI film of 3-7 nm 
was formed on the graphite surface as a result of minimal electrolyte 
component decomposition [407]. This layer only negligibly affected the 
Na+-DEGDME diffusion to the graphite lattice. By contrast, 
carbonate-based electrolytes, in combination with sodium battery 
chemistry, were able to produce relatively thick SEI layers. Here, the 
high electrolyte decomposition acted more as an insulator and impeded 
the Na+-solvent transport [15]. However, the oxidation of ether-based 
electrolytes at ~1 V restricts their application in hard carbon anodes. 
To optimize liquid electrolyte Na batteries, balance the anode char-
ge/discharge to the cathode, and increase the usable voltage window, 
the co-intercalation voltage can be tuned up to 0.38 V by the conducting 
salt concentration [418]. Increasing salt concentration of the electro-
lytes leads to a substantial decrease in the free solvent activity, which 
shifts the co-intercalation voltage to lower values. Adjustment of the 
co-intercalation potential of SIB anodes enables high output voltages 
and allows the development of high-energy and high-power-density 
SIBs. In the work of Kim et al. [417], a SIB with a graphite anode 
delivered a reversible capacity of ≈150 mAh/g for 2500 cycles, and 
more than 75 mAh/g at 10 A/g, with ether-based electrolytes. The re-
searchers showed that the choice of the conducting salt anions, such as 
NaPF6, NaClO4, and NaCF3SO3 dissolved in the ether-based electrolytes 
affect the electrochemical reactions only marginally [417]. 

Although non-modified graphite can hardly be used as an efficient 
electrode material for SIBs, the intercalation of K+ ions into the graphite 
layers in ethylene carbonate (EC)/diethyl carbonate (DEC)-based elec-
trolytes leads to a high theoretical capacity of 279 mAh/g, in spite of the 
larger ionic size of 138 pm of K+ as compared with Na+ [406]. The 
intercalated K+ ions enlarge the interlayer distance of fresh graphite 
from 3.35 Å to 5.35 Å, and the volume expansion after full K interca-
lation is calculated to be almost six times larger in contrast to the Li 
intercalation. This K-induced volume expansion/contraction of graphite 
during intercalation/de-intercalation is reversible and without a nega-
tive effect on the cycling stability [405]. K+ ion intercalation into 
graphite contrasts with that of the intercalation of alloys and conversion 
electrode materials, which normally leads to fast electrode deactivation 
and an irreversible capacity drop [419,420]. In addition, some studies 
have proposed the intercalation of various K(solv)yC species into 

graphite with DEGDME and TEGDME-based electrolytes to form t-GIC 
[421,422]. Solvated K+ ions are smaller than solvated-Na+and -Li+

owing to the weaker Lewis acidity of K+ ions in common solvents. This 
property, in addition to the lower desolvation energy of K+ ions, pro-
vides higher transport numbers of solvated K+ ions and fast diffusion 
kinetics across the electrolyte/electrode interface [423]. 

In summary, the alkali cation-solvent molecule complex in the 
graphite host should be chemically stable and should have a high LUMO 
level to ensure the reversible co-intercalation. When the complex is 
instable, it can decompose, and gas evolution can trigger the exfoliation 
of graphite upon co-intercalation (Fig. 16 (b III)). A straightforward 
strategy to enhance the intercalation efficiency of Na+ ions is to use a 
hard carbon in the anode composite. Hard carbons have a non-ordered 
and defective structure with interlayer distances of about 3.8 Å, 
large enough to form intercalation compounds. NaC8 was reported to 
deliver a theoretical capacity of 279 mAh/ g at low voltages of about 
0 V [424]. NaC6 was reached when the equilibrium interplanar distance 
was increased to about 4.5 Å [425]. No co-intercalation plateau was 
detected in the voltage range of 0.6-0.8 V in the voltage profile of hard 
carbon. This observation shows that Na intercalates into graphite to 
form a binary graphite intercalation compound regardless of the type of 
electrolyte [426]. To evaluate the effect of the electrolyte on the 
reversible Na+ ion storage capacity of hard carbon electrodes, electro-
chemical cycling was performed in carbonate-based electrolyte (EC, PC, 
and butylene carbonate (BC)) solutions containing NaClO4 (see Fig. 17). 
In the potentiogram, a slope from 1.2 to 0.1 V and a plateau region 
between 0.1 and 0 V were observed during the initial sodiation. During 
de-sodiation, the presence of plateau and slope regions in this voltage 
range suggesting that hard carbons reversibly insert sodium when 
organic carbonates as electrolytes are used. As seen in Fig. 17 (b), the 
hard carbon electrode in the BC electrolyte showed a reversible capacity 
of ≥230 mAh/g in the early cycles. However, serious degradation began 
after the 20th cycle. In contrast with the BC solution, the hard carbon 
electrode retained a steady capacity in the EC and PC solutions [427]. By 
considering the high melting point of EC (~37◦C), a PC-containing 
electrolyte is the better choice for SIBs. The SEI formed on the hard 
carbon after cycling represents a rough and non-uniform layer with a 
thickness of approximately 30 nm. As commonly accepted, 
carbonate-based electrolytes are thermodynamically instable at the 
standard potential of Na, and some decomposition of the solvents occur. 
For long-term cycling an interfacial passivation is required. After one 
month, the discharge capacity still reached approximately 80% which 
also implied a low self-discharge. The surface film worked as a passiv-
ation film and protected the Na-intercalated hard carbon anode from 
chemical reaction with the electrolyte [427]. 

Ponrouch et al. [428] reported that an additive-free and EC:PC-based 
electrolyte with both NaClO4 and NaPF6 as conducting salts was able to 
improve the reversible capacity of hard carbons to ≥300 mAh/g at C/10 
after 120 cycles. Gebrekidan et al. [429] described the solubility of 
NaPF6 in various single solvents decreased in order of EC (1.4m) > PC 
(1.0 m) > DEC (0.8m) > DMC (0.6m), which implies that NaPF6 is co-
ordinated more strongly by EC followed by PC in the electrolytes. In 
addition, the lower rate of exothermic heat of NaPF6, NaClO4, and 
NaTFSI released for the electrolytes contain EC/PC compared to EC/DEC 
and EC/DMC in contact with sodiated hard carbon, indicated that this 
mixture is suitable as a safer solvent for SIBs. 

Galvanostatic discharge/charge cycles for graphite and hard carbon 
show different voltage profiles consistent with their different structures. 
Sites that Li can access easily, which are either electronically or 
geometrically favored, generally contribute to a sloping profile with 
large hysteresis for the hard carbon. By contrast, graphite is character-
ized by many equivalent sites for the lithiation. Their contributions yield 
the potential plateau. The sloping discharge profile of a disordered 
carbon with many inequivalent Li coordination sites shows that most of 
the capacity was accumulated at a higher voltage range than that for a 
commercial, ordered carbon. Indeed, randomly aligned graphitic layers 
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facilitated faster metal intercalation as compared with the ordered 
graphitic layers in commercial graphite [207]. Because of this structural 
feature, hard carbons in KIBs perform well acording to the rate capa-
bility experiments [430]. However, to optimize the battery perfor-
mance, the metal intercalation corresponding to the flat voltage plateau 
needs to be extended, while the sloping region should be shortened 
[431]. 

A voltage-capacity curve of a graphite electrode in the voltage range 
below 0.3 V showed several transition stages during the first lithiation. 
The potentials for potassiation and lithiation into graphite layer were 
reported to be around 0.24 V and 0.1 V vs. Li+/Li, respectively [432, 
433]. The intercalation of Li into the graphite structure can be classified 
into the intercalation stages LiC72, LiC36, LiC27, LiC18, LiC12, and LiC6 
[434–436]. The optical spectrum changes from black for graphite via 
blue for LiC18 to brown for LiC12 to finally reach a golden color for LiC6 
that points to significant changes in the electronic structure according to 
the lithiation [437]. Such influence manifests in the partial filling of the 
π* states, which are unoccupied in untreated graphite. The intercalation 
products LiC12 and LiC6 show a metallic character owing to the partially 
filled π* states which is reflected in increasing contributions to the 
respective density of states the more Li intercalates [437]. Additionally, 
phonon dispersion and electronic band structure calculations suggest a 
fast kinetics of K+ at the expense of a lower capacity [438] . 

In contrast with graphite, neither staging nor color changes were 
reported for hard carbon electrodes during K+ or Li+ intercalation. In 
this case, hard carbons have shown to benefit from the larger interplanar 
spacing compared to graphite, which resulted in a relatively constant 
distance during the potassiation or lithiation process [436]. 

Transition stages were also observed during the potassiation process 
of graphite as displayed in Fig. 18 (a) [406,433,439]. To elucidate the 
electrochemical potassium-storage mechanism in graphite at room 
temperature, ex situ XRD was carried out for selected states of charge in 

the first-cycle at C/10 (Fig. 18 (b)). By dropping the voltage from 0.3 V 
to 0.01 V, the sequential formation of KC36, KC24, and KC8 was described 
[433]. However, Luo et al. [406] calculated a staging scenario for the 
electrochemical intercalation of K+ ions following the reaction path 
KC24 → KC16 →KC8 via DFT. The color of graphite changed from black in 
the initial stage to gold after intercalation of K+ ions at least until KC8 
(Fig. 18 (c) related to the gradual expansion of the graphitic interlayers 
and the changes in the electronic structure due to electron doping. The 
calculated electronic density of states (DOS) for graphite and KC8 indi-
cated an upshift of the Fermi level which may cause the change in the 
optical spectrum. 

The golden colored KC8 as the final product of potassiation exhibited 
a plateau above the plating potential of K metal [433]. This property is 
important as it may avoid or at least relieve dendrite formation and 
increases the safety of an application. In spite of providing large specific 
capacities at low current rates, graphite in KIB compared to LIB anodes 
suffered from fast fading of capacity because of its dramatic volume 
expansion, especially at high rates. Like other compounds with large 
volume changes, graphite shows partial structure decomposition during 
potassiation and depotassiation. Further, the specific capacity dropped 
significantly from 263 mAh/g at C/10 to 80 mAh/g at 1C [433], sug-
gesting slower K+ ion intercalation kinetics compared to the Li+ ions 
[406]. The large voltage hysteresis of 0.14 V between the charge and 
discharge curves justified the poor rate capability [433]. However, 
selecting appropriate binders to ensure a uniform coating layer and a 
reduced formation of a SEI film could help to decrease the stress induced 
by the large volume expansion of graphite during potassiation. These 
modifications can then repel the rapid capacity drop. According to Zhao 
et al. [440], the use of EC:PC as electrolyte and Na alginate as a binder 
increased the efficiency of the electrochemical performance of graphite 
as a KIB anode inferred from higher Coulombic efficiency and better 
cycling stability. 

Fig. 17. Initial cycle and variation in reversible capacities for hard carbon electrodes in a) EC, b) PC, and c) BC solution containing 1 mol/l NaClO4 tested at 0.025 A/ 
g in beaker-type cells. Adopted from [427] with permission. 

Fig. 18. a) Galvanostatic potassiation/depotassiation at C/10 with the points 1-13, where b) Reaction-representative ex situ XRD measurements were performed. 
Adapted from ref. [433] with permission. c) Black-grayish polycrystalline graphite platelet in the initial state and after reaching the final potassiation state KC8. 
Adapted from ref. [406] with permission. 

N. Soltani et al.                                                                                                                                                                                                                                 



Progress in Energy and Combustion Science 87 (2021) 100929

24

In situ Raman spectroscopy has provided detailed insights into the K+

ion insertion mechanism into few layered graphene [441]. As illustrated 
in Fig. 19 (a-c), the G peaks for the charged (Gc) and the discharged (Guc) 
state appeared in a voltage window between 0.37 to 0.2 V. The Gc peak 
shifted to lower wave numbers as the voltage decreased from 0.22 V to 
0.01 V (Fig. 19 (b,c)). This shift can be inferred to be the result of charge 
density on layers close to the intercalants. From 0.24 V to 0.15 V, the 
intensity of the Gc peak increased as the Guc and 2D peaks decreased, 
whereas all peaks become red-shifted. From 0.15 V to 0.01 V, the G peak 
in the Raman spectra changed from being symmetrical to being asym-
metrical (Fig. 19 (b)). However, the Guc peak was assigned to the gra-
phene layers that were not adjacent to the K+ ions or where K+ ions are 
homogeneously distributed without localized charges, as related to the 
increase of the Guc peak in the depotassiated state (e.g. at 2 V) in the 
absence of the Gc signal [441]. It should be noted, that even more 
potassiation stages are observed with few layered graphene compared to 
graphite. Raman spectroscopy enables much deeper understanding as 
shown for the results on the alkali intercalation into hard carbons. Here, 
differences between Li on the one side and Na and K on the other side 
were demonstrated and limitations uncovered. These investigations 
supported by respective band structure and phonon dispersion calcula-
tions allow for recommendations towards the design of the hard carbon 
pores. This procedure was identified to be crucial to minimize diffusion 
barriers and to improve the performance of KIBs [438]. 

4.2. SEI formation on graphite and hard carbon in LIBs, SIBs and KIBs 

The onset potential for the decomposition of electrolytes and the 
formation of a passive layer composed of inorganic and organic con-
stituents on carbons are different. However, no standard starting 

potential for the formation of the SEI on graphite and disordered carbons 
exists. It varies and depends on the composition of electrolyte, the ad-
ditives used in the electrolyte, the sweep rates, physical properties of the 
carbon anode such as particle size, pore size, and surface chemical 
composition (adsorbed species, heteroatoms) [442]. The formation, 
thickness and, in general, chemical and physical properties of the SEI 
formed on graphite depend on the ratio of basal planes to edge planes. 
The edge planes provide more susceptible sites for the decomposition of 
the electrolyte, but also more access points for metal intercalation than 
the basal planes [436,443,444]. 

The SEI formation on graphite in KIBs commences at 0.6 V and its 
formation is expected to be more significant at 0.15 V [445]. While 
various voltages, including 2 V [446], 1.7 V [447], and 1 V [448], have 
been reported for SEI formation on graphite and related Li consumption. 
The most widely accepted and proven SEI formation voltage for graphite 
is 0.8 V in the first cycle [449]. However, the formation of thick pro-
tective SEI on graphite usually prevents further electrolyte degradation 
at voltages <0.8V vs. Li+/Li. It is favorable to stop the SEI formation 
before the start of the Li+ ion intercalation at about <0.3 V. Unfortu-
nately, this demand is often out of reach for disordered (hard) carbons 
because of its earlier intercalation at about 1.5 V vs. Li+/Li [443,446]. 
The reduction peak appearing at ~1.1 V was ascribed to the irreversible 
reaction of the electrolyte with surface functional groups [450]. In 
general, at higher voltages (~0.8 V vs. Li+/Li) the formed SEI was 
mainly composed of organic polymeric compounds with low inorganic 
content. At low voltages the SEI was transformed into a more compact 
structure with inorganic salts as the main constituents neighboring the 
active material arranged in the form of an inner layer [451], however, 
this layer on sodiated hard carbon is nonhomogeneous and less compact 
in nature compared to that in LIBs. In addition, the electrolyte 

Fig. 19. a) Linear sweep voltammogram of few layered 
graphene during Raman spectroscopy experiments with 
optical microscope images of initial, non-potassiated state 
and the final stage 1 corresponding to KC8 (top), intensity 
development according to partially localized charge due to 
K+ ion intercalation (Gc, middle) and the shift of the po-
sition of the G band where charges are equally distributed 
(Guc, bottom). b) Raman spectra for selected states of 
charge with the respective K+ ion intercalation stages. c) 
Waterfall plot of all Raman spectra taken between 0.37 V 
and 0.01 V. Adapted from ref. [441] with permission of the 
Royal Society of Chemistry.   
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decomposed further and established an outer SEI layer of mainly organic 
components [451,452]. 

The mainly organic part of the SEI on hard carbons in LIB is consti-
tuted by lithium organic compounds and others [443,444]. The main 
inorganic compounds (A2CO3 and A2O) of SEI are Li2CO3 and Li2O 
which are more enriched in the presence of EC [453]. The composition 
of the SEI can be also modified by surface functionalization. Ganesh et al. 
[454] reported on a H-terminated surface that postponed the reduction 
of the electrolytes such as EC or DMC, while an O/OH terminated surface 
EC reduced quickly. Oxygen-terminated sites allow for a better charge 
transfer than H-terminated sites and hence led to electrolyte reduction. 
Organic SEI compounds in KIBs are similar to LIB systems [445]. Wang 
et al. [455] revealed that (CH2OCO2K)2, C2H5OCO2K, KF and K2CO3 are 
the dominant components of the SEI layers in KFSI- and KPF6-based 
electrolytes. They observed a higher amount of K2CO3 is formed in 
KPF6-based electrolytes compared to KFSI-based electrolytes. However, 
the SEI in the KFSI-based electrolyte is much more stable, compact and 
thinner than in the KPF6-based electrolyte. All these features, together, 
ensure good stability and high reversibility in the KFSI-based electrolyte. 
A study of the SEI on carbon in Na half-cells showed a lower dissolution 
energy of Na with respect to Li and the higher redox potential of Na+ vs. 
Li+ (~ 0.33V). A reduction of the electrolyte degradation at the surface 
of the sodiated anodes, affect SEI behavior [456]. Organic SEI compo-
nents in SIBs, are mainly composed of sodium alkyl carbonates 
(ROCO3Na), sodium alkoxides (RONa), ethylene oxide oligomers (such 
as polyethylene oxide, PEO, (CH2-CH2-O)n), semi-carbonates and so-
dium double alkyl carbonates (NaO2CO-C2H4-OCO2Na). The SEI in SIBs 
incorporates higher amounts of C=O or C-O containing species than 
C-C/C-H as found in LIBs [457]. 

The higher solubility of the organic compounds formed on sodiated 
hard carbons compared to lithiated hard carbons, caused a conversion of 
(CH2OCO2Na)2 into Na2CO3 [457]. The use of fluoroethylene carbonate 
(FEC) together with NaTFSI conducts the formation of Na2CO3 and NaF, 
with poor electrochemical performances. However, the formation of 
NaO2CO-C2H4-OCO2Na and NaF in the mixture of NaPF6 and FEC, 
showed better electrochemical performances. The presence of a rather 
insoluble species such as NaF can play an important role in stabilizing 
the SEI and in limiting solubility issues related to other compounds (such 
as NaO2CO-C2H4-OCO2Na here) and eventually improve the capacity 
retention upon cycling [456]. The organic content of the SEI on sodiated 
hard carbons decreases based on the Na salts in the order: NaPF6 >

NaClO4 > NaTFSI > NaFTFSI > NaFSI [457]. However, the SEI formed 
during sodiation was composed mainly of inorganic compounds such as 
Na2O, Na2OH, Na2F, Na2Cl, Na3O, Na3F2, and Na2CO3 [427]. Na+ ion 
diffusion through the hard carbon SEI is dominated by inorganic con-
stituents, such as Na2CO3 and NaF. iIn the case of the SIB a higher 
diffusion energy is required e.g. compared to Li+ ions which just diffuse 
through an mainly organic layer with some Li2CO3 and LiF [458]. 
Higher amount of NaF was observed for NaFSI and NaFTFSI compared to 
NaPF6- and NaTFSI-containing electrolytes [457]. 

The composition of the SEI layer can be varied based on the used 
electrolyte. Xiao et al. [459] reported about the intercalation of Na+ ions 
into hard carbons with TEGDME and a carbonate electrolyte. The 
charge–discharge curves were recorded with an almost similar profile 
for both electrolytes. However, hard carbons showed better cycling 
stability in TEGDME than in the carbonate electrolyte, particularly at 
high current densities. This difference was attributed to the different SEI 
layer composition on the hard carbon surface, which affected the Na+

ions transfer kinetics. Because of the weak decomposition of TEGDME 
on hard carbons, a thin SEI layer composed of organic compounds with 
C-O and O=C-O bonds was formed, which quickly stabilized around at 
0.5 V. However, after cycling in the carbonate electrolyte the surface 
ofthe hard carbon was covered by a thick SEI layer (mainly composed of 
inorganic compounds like Na2CO3) and did not stabilize until or even 
below 0.2 V. 

To compare the electrochemical performance of a sucrose-derived 

hard carbon in EC:DEC and DEGDME electrolytes, it was tested in 0.8 M 
NaPF6/EC:DEC (1:1 v/v) and 0.8 M NaPF6/DEGDME. A higher irre-
versible capacity was observed for the EC:DEC solvent during the first 
cycle that supported a higher decomposition of the electrolyte compo-
nents to form the SEI on the hard carbon surface. Additionally, a larger 
voltage gap between cathodic and anodic peaks of 0.14 V for EC:DEC 
compared to 0.06 V for DEGDME indicated a slower Na+ ion transport 
for the EC:DEC system. With SEM, a thin SEI layer on a smooth and 
dense hard carbon surface was recognized for DEGDME. This observa-
tion once again verified the efficiency of the SEI layer to protect 
DEGDME against further decomposition or the hard carbon anode from 
reactions with the electrolyte. As the main contribution of the SEI was 
identified in a high rate capability due to a fast Na+ ion transport across 
the layer [460]. The same results were observed by Kim et al. for a 
natural graphite anode [461]. They showed that ether-based electrolytes 
with suppressed electrolyte decomposition only form a negligible SEI 
film on the graphite surface. This thin SEI was beneficial for the trans-
port of Na+-solvent complexes which were found to co-intercalate into 
the graphite lattice. Besides DEGDME, TEGDME and DME also showed a 
similar behavior. The chemical compositions of the SEI formed with EC: 
DEC and DEGDME electrolytes were analyzed by XPS. The O 1s spectra 
showed the existence of Na alkoxide and Na2CO3/Na2CO2R, corre-
sponding to the mono-, bi- and tri-oxygenated environments of carbon at 
533.3 eV, 531.8 eV and 536.5 eV, respectively, for hard carbons cycled 
in DEGDME and EC:DEC. The F1s spectra displayed two signal contri-
butions at 684.4 eV (Na-F) and 688.4 eV (P-F) related to the decompo-
sition of residual NaPF6. Depth profiling of the sample with Ar+ ion 
sputtering led to a decrease in the O1s spectrum intensity, which was 
referred to C-O here, and an increase of the intensity in F1s spectrum, 
according to Na–F contributions. After sputtering times of >1 min., no 
distinct change was recorded in the spectra. The DEGDME 
electrolyte-formed SEI was therefore quite thin and mainly consisted of 
NaF in the interior. However, sputtering of the SEI formed with the EC: 
DEC electrolyte showed a similar change in the spectra. At longer 
sputtering, a gradual change in the O1s spectrum intensity (referring to 
O-C(=O)O here) and a quick decrease in the Na–F contributions were 
found. This observation pointed to a thick SEI with inhomogeneously 
distributed organic and inorganic constituents [462]. 

Fondard et al. [399] showed the best electrochemical performances 
on hard carbon electrodes with an electrolyte of NaPF6 dissolved in an 
EC:DMC electrolyte at addition of 3% FEC. The enhanced performance 
was attributed to the formation of a SEI composed of NaO2CO-C2H4-O-
CO2Na and NaF. On the other hand, a low NaF or a high Na2CO3 content 
result in poorer electrochemical performances. Komaba et al. [463] 
suggested that the reversible capacity and the retention for the hard 
carbon anodes could be improved by adding a small amount of FEC to 
the PC solvent. Although, the FEC additive enables a reduction at higher 
potential (~0.7 V) and a formation of a crack-free SEI on hard carbons to 
suppress the continuous reduction of the electrolyte on anode surface in 
SIBs. Nevertheless, the specific capacity and cyclability of the graphite 
become worse by FEC addition to the electrolyte for KIBs [464]. FEC 
stimulates the electrolyte decomposition at potentials below 2 V vs. 
K+/K and results in larger electrode polarization and fast capacity 
fading. When vinylene carbonate (VC) is added instead, the potential 
reduction of the electrolyte shifts to lower values and subsequently the 
chemistry of the SEI layer changes. Katorova et al. [465] showed that the 
SEI is mainly composed of inorganic components in carbonate-based 
electrolytes, whereas the VC additive changed the composition of the 
SEI to more organic compounds. These organic compounds improved 
the mechanical properties of the SEI and made it more resistant toward 
fracturing during the hard carbon volume changes in potassiation and 
depotassiation. On the other hand, the VC additive negatively affected 
the performance of SIBs as recognized by a decreasing discharge ca-
pacity [466]. Yverick et al. [467] also improved the hard carbon anode 
performance in Na half-cells by manipulating the SEI formation at high 
charging rate. The hard carbon with thin SEI formed by ether-based 
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electrolytes at 100 A/g exhibited the lowest impedance and delivered 
almost twice the capacity of the electrode with the SEI formed at 1 A/g. 

4.3. Role of texture and surface groups in biomass-derived anodes in LIBs 

Various voltage profiles for different types of carbonaceous materials 
have been reported, which represent individual mechanisms that 
depend on the preparation temperature. Carbon synthesized at low 
temperatures <1000◦C contains a large number of micropores that 
interestingly can contribute marginally to the low voltage plateau ca-
pacity [104,250]. Higher first lithiation capacity, in addition to irre-
versible capacity loss as compared with carbon synthesized at higher 
temperature, is commonly observed in the charge/discharge curve. 
However, by increasing the carbonization temperature and decreasing 
the micropore volume, and with less Li uptake in the pores, the specific 
capacity as well as irreversible capacity loss decrease but exceed longer 
capacity retention [468]. 

The reported specific capacities for graphite were lower compared to 
the hard carbons. By contrast, the capacity of the hard carbon faded 
faster than that of graphite in the lithiation process. This additional 
capacity is related to occupation of a second Li covalently bond to the 
nearest neighbor sites of a Li in the intercalated carbon and also the 
existence of different Li-storage sites that enable the plating of non- 
dendritic Li metal on the external surface of graphite. Finally, the ac-
commodation of Li in the vicinity of defects and micropores out of reach 
of the electrolyte is also a potential reason [469]. However, based on the 
treatment temperature, various pore shapes such as open, partially 
closed, and closed nanopores can be formed, which affect the adsorption 
and desorption kinetic of Li. 

It is understood that the smaller particles with higher surface area 
cause larger SEI formation, higher irreversible Li loss during SEI for-
mation, and higher exfoliation of the graphite as well. Therefore, using a 
low specific surface area of less than 40 m2/g, or even less than 10 m2/g 
to suppress side reactions at charging and discharging is preferable 
[461]. The high number of micropores in biomass-derived hard carbon 
inhibits an optimized transport pathway for the electrolyte and even-
tually causes the reported dramatic drops in capacity, already after a few 
cycles [470]. The slow electrolyte transport in a microporous system is 
the reason why micropores in carbon materials are unable to yield good 
rate performance, especially at high current density. By contrast, the 
existence of macropores is favorable for high rate performance. Zhang 
et al. [249] compared porous hard carbons derived from pine needles, 
with a high specific surface area of 3000 m2/g but few macroporous 
channels with rice straws that had almost the same surface area but 
more macroporous channels. They found that the porous carbon derived 
from rice straws had distinctly higher reversible capacity at high rates. 
This behavior can be explained by the fact that macropores quickly drain 
the electrolyte reservoir and enable fast spread throughout the pore 
system to reach not only the mesopores but even the micropores. Cheng 

et al. [471] showed for air oxidized biomass, that the defects or micro-
pores on the basal plane of the carbon material were converted to large 
multi-channel pores and holes which helped to increase the lithiation 
capacity over 500 mAh/g of capacity. 

Fig. 20 (a) displays the first five cyclic voltammogram (CV) curves 
for porous carbon fibers, with a large pore size distribution from 0.3 nm 
to 40 nm. The electrolyte decomposition was recognized at 0.72 V vs. 
Li+/Li as an additional cathodic current peak in the first cycle at a scan 
rate of 0.1 mV/s in a voltage window of 0.01–3.0 V vs. Li+/Li. In 
addition, the reduction current in the first cycle below 1.8 V vs. Li+/Li 
reaches a higher value as compared with further cycles. This extra 
current was inferred to represent the formation of the SEI film, which 
finally resulted in the higher discharge capacity of the first cycle than 
that of the second cycle [203]. Here, the anode suffered from an irre-
versible capacity of about 39%. This behavior was attributed to the 
presence of ~7 % oxygen-containing surface groups. High-resolution 
XPS revealed hydroxyl, carbonyl (or ether), as well as carboxyl (or 
ester) groups with binding energies of 286.2, 287.2, and 288.9 eV 
respectively in the C1s spectrum. The capacitance of the sample was also 
calculated based on the integral area of the redox processes and for 
different scan rates ranging from 0.1 to 10 mV/s (see Fig. 20 (b)). 
Almost 90% of the charge storage at all scan rates resulted in a 
surface-related capacitance owing to the non-faradaic double layer. 
These results underline that the synthesized porous samples could be 
promising anode materials for high-power energy storage devices [203]. 

According to Mabuchi et al. [473], micropores formed between 
graphene layers in disordered carbons caused an excess capacity. They 
inhibited Li insertion, and induced an extensive passivation layer on the 
surface of the pores. This effect resulted in a pore-size reduction or even 
clogging of the pores. A decrease of diffusion coefficients were deter-
mined, and eventually Li was captured in the pores and was unavailable 
for further cycling [474]. Stephan et al. [19] reported that a high surface 
area can adversely affect the reversible capacity. Electrochemical mea-
surements on ZnCl2-activated hard carbon from banana fibers with a 
specific surface area of 1285 m2/g revealed a significant specific ca-
pacity of 3123 mAh/g vs. Li+/Li in the first cycle. However, it exhibited 
high irreversible capacities of up to 88% for the subsequent cycle. These 
researchers attributed these Coulombic inefficiencies to huge surface 
passivation and the clogging of pores and cavities. 

Beyond the influence of porosity, surface functional groups can 
significantly influence the intercalation reversibility of hard carbon, if is 
not treated at inert or at least dry conditions after finishing the pyrolysis 
[436,444,475]. To decrease irreversible capacity, a surface-modified 
hard carbon was prepared by reducing the water content at tempera-
tures between 50◦C to 180◦C before pyrolysis. Kikuchi et al. [476] also 
confirmed an improved cyclability of a hard carbon once the surface 
hydroxyl groups and the adsorbed water on the surface were removed 
during heating at 980◦C in vacuum. However, Xie et al. [477] claimed 
that introduction of oxygen functional groups on sucrose-derived carbon 

Fig. 20. a) The first five CV curves cycled at 0.1 mV/s, b) stable CV curves cycled at various scan rates from 0.1 to 10 mV/s. Adopted from [472] after the 
required permission. 
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via oxygen-plasma treatment stabilized the solid electrolyte interface. 
The oxygen plasma could decrease active carbon sites due to its strong 
oxidizing ability. 

Another alternative to a post-pyrolysis treatment was established 
with a thin carbonaceous layer prepared by chemical vapor deposition 
from ethylene after the carbonization but before any exposure to 
ambient conditions. Electrochemical tests showed a decrease in the 
irreversible capacity with >150 mAh/g before the layer deposition to 
less than 70 mAh/g afterwards [478]. With the chemical vapor depo-
sition of a carbon layer from propene on a carbon cloth surface, Béguin 
et al. [479] initialized an 1.5-fold drop in the irreversible capacity 
attributed to a decrease in the amount of active sites involved in para-
sitic reactions or SEI formation. Additionally, the active surface area was 
reduced by such treatment, and the pyrolytic carbon layer offered a 
significantly more homogeneous surface with lower defect concentra-
tion. Indeed, a protected pyrolytic carbon layer on hard carbons avoided 
the diffusion of Li+ ions into the active sites of the hard carbon in a 
similar way [480]. 

Slow heating rate, high gas flow rate and the continuous removal of 
the released gases are further effective ways to decrease the specific and 
active surface area of hard carbons. A longer residence time of the hard 
carbon with the pyrolysis gas products, especially CO2 but others like O2 
as well, causes an extensive carbon burnout resulting in a larger specific 
surface area and the formation of micropores, which all contribute to 
irreversible capacity losses due to the high amount of generated active 
sites [62,481]. 

Some other good examples are shown for the hydrogen-to-carbon 
ratio with typical values of 0.05-0.30 in pyrolytic carbons. The revers-
ible capacities of hydrogen-containing carbons, heated at T < 800◦C 
were directly correlated with their hydrogen contents [17]. Papanek 
et al. [482] reported a large reversible Li capacity due to Li intercalation 
and binding to these hydrogen-saturated sites at similar potentials. 
However, they showed that the binding of Li to a carbon atom in addi-
tion to a hydrogen atom changed the hybridization of the carbon-carbon 
bond from sp2 to sp3. This change in the carbon host resulted in a voltage 
profile hysteresis. Note, coating of hard carbons with a thin Al2O3 layer 
(~2 nm) as an artificial solid electrolyte interphase with the ability to 
conduct Li+ ions upon lithiation also improved the average Coulombic 
efficiency of a hard carbon from 99.0 to 99.6% [483–485]. 

To date, it is assumed that Li insertion into graphene layers and 
nanopores of hard carbons occurs in the sloping and plateau regions 
[486–490]. Lotfabad et al. [104] and Kubota et al. [491] showed three 
distinct regions in the potential profile for the lithiation and delithiation 
of a hard carbon. Region I contains a sloping potential curve at 2.0− 0.25 
V vs. Li+/Li associated with the Li+ ion insertion into the large interlayer 
spacings close to defects in the ionic state. In region II at an intermediate 
potential of 0.25− 0.05 V, the signal corresponds to the intercalation of 
Li+ ions into the narrow interlayer spacings. The third region represents 
the low-potential region of 0.05− 0.002 V usually displayed as a 
plateau-like curve, and the capacity is mainly dominated by Li insertion 
into micropores with pseudometallic clustering. The same concept was 
identified for the sodium case [104]. Nevertheless, the contribution of 
each potential region to the final specific capacity can vary by the 
selected synthesis temperature. For sucrose-derived hard carbons 
treated at 700◦C, the high potential region maximally contributes to the 
specific capacity while for samples treated at 2000◦C the middle po-
tential region becomes important as well. A large potential hysteresis for 
the lithiation and de-lithiation was observed for samples treated be-
tween 700 and 1300◦C due to their higher dangling bonds or hydrogen 
terminated edges. This influence is smaller in samples treated at 1300◦C 
≤ T ≤ 2000◦C. With increasing carbonization temperature, the potential 
of the anodic peaks shifted to lower voltages than the Li intercalation 
potential in graphite (~0.09 V vs. Li+/Li) [491]. 

However, Qui et al. [424] reported on disadvantageous d-spacings 
for inserting Li according to the intercalation mechanism. They found 
that metal interactions with graphitic layers depend on the interlayer 

spacing and therefore determines if metal intercalation could occur or 
adsorption is the main step. Intercalation of Li hardly proceeded, given 
that the size of Li+ ions is very small as compared with the d002 spacing 
of the hard carbon. The researchers inferred that the Li+ ions were rarely 
intercalated into graphite with d-spacings >0.37 nm and an adsorption 
mechanism is preferred. The absence of a low-potential plateau in the 
CV curves indicated the correlation of the electrochemical behavior of 
Li+ with an adsorption mechanism. 

Notably, Alvin et al. [313] claimed that Li+ intercalates in the 
graphitic layers at 0 V with very low current density of 0.003 A/g, and 
that metal plating occurred by further decreasing the potentials below 0 
V (at -0.03 V). Su et al. [492] discussed a more smooth and homogeneous 
lithium deposition at the inside of nanopores of hard carbons during 
lithiation at -0.05 V compared to inhomogeneous Li dendrite formation 
on graphite during lithiation at -0.03 V. Alvińs group reported on 
extremely low insertion rates which help to unblock inaccessible Li+ ion 
intercalation sites but only at voltages near 0 V, resulting in a low--
voltage plateau capacity. To support this claim, they pointed to: 1) 
emerging broad peak at 4 ppm in solid-state 7Li nuclear magnetic 
resonance (NMR) at the voltage between 0.1 and 0.0 V, indicating a 
strong interaction between Li and graphitic layers or micropore surfaces 
of the hard carbon; 2) the existence of the sharp and high-frequency 
peak at 9 ppm attributed to the Li+ intercalation into the graphitic 
layers at potential near to 0 V; and 3) a chemical shift of 250 ppm cor-
responding to metallic Li at potential -0.03 V. To understand the 
behavior of the Li+ ion insertion into the graphene layers of hard car-
bons, DFT calculations were performed and showed a constant d-spacing 
during the Li insertion. For further information, the average charges of 
the carbon atoms during the carrier-ion insertion were also calculated. 
Normally, after cation insertion, the edge carbon atoms become partially 
negatively charged, which induces an electric repulsion force between 
the carbon atoms. This repulsive force becomes stronger as the cation 
size and its intercalacted amount increases. However, it was observed 
during Li insertion, that the charge transfer to carbon was not sufficient 
to increase this repulsive force even after the insertion of a higher 
number of Li. On other hand, the high interactions between carrier 
atoms by increasing the amount of inserted atoms caused the carrier 
atoms became less ionic and subsequently decreased the charge transfer 
to the hard carbon. In a GITT profile at 0.05 A/g, the researchers 
observed that DLi

+ values decreased as the voltage decreased. This result 
was attributed to the repulsive forces between absorbed Li+ ions at high 
and low voltages. However, this behavior was completely different for 
the graphite anode. Two minimum DLi

+ values between 0.1 and 0.05 V 
demonstrated that Li+ gradually intercalated into the graphite layer. 

4.4. Mechanism of sodium storage during electrochemical reactions 

Different Na+ ion storage mechanisms in hard carbons have been 
proposed in the high and low voltage regions [104,250,425,493]. A first 
proposed mechanism that applies to the high voltage region involves the 
adsorption of Na in the pores, between the domains and on the defect 
sites of hard carbons as these materials offer a wide adsorption energy 
distribution. A sloping voltage profile is caused by the adsorption sites. 
In the low voltage region, the intercalation of Na+ ions between the 
graphene layers results in a plateau-like profile (Fig. 21 (a)). Avin et al. 
[313] showed the incomplete filling of the micropores present in highly 
porous carbons with low carbonization temperature while all the mi-
cropores present in the hard carbons synthesized at 1200-1500◦C were 
filled with Na+ ions. The remaining micropores could be filled later near 
the cutoff potential. 

Pyrolysis of polyaniline (PANI) forms hard carbons with a low po-
tential plateau between 0.0 and 0.2 V during Na+ ion storage. In this 
voltage region, the intercalation of Na+ ions into the spacing between 
the graphene layers appeared already. In this example, the high-voltage 
sloping region is related to Na+ ion adsorption on storage-active surface 
sites [425]. Ding et al. [250] reported similar results for carbonized peat 

N. Soltani et al.                                                                                                                                                                                                                                 



Progress in Energy and Combustion Science 87 (2021) 100929

28

moss and attributed the low voltage region to the intercalation of Na+

ions into a highly ordered pseudo-graphitic structure with dilated gra-
phene interlayers. In their experiments, the interlayer spacing expanded 
from 3.96 to 4.16 Å and was inversely proportional to the voltage region 
with 0.1 V ≥ U ≥ 0.001 V. 

The contribution of the plateau capacity increased proportionately 
with the carbonization temperature [102,491]. For example carbons 
extracted from pine cone [102], sucrose [493], lotus stem [495], kelp 
[496], rice husk [497], pine nut shell [498], and corn cob [499] at 
1600◦C showed an initial low voltage plateau capacity two to three 
times larger than the capacity contributions from the high voltage 
sloping region. Fig. 21 (b) shows the charge/discharge profiles of hard 
carbon derived from mangosteen shell at a current density of 0.02 A/g in 
the voltage range of 0− 2 V [494]. Hard carbon prepared at 1500◦C 
(HC15002h) for 2 hours deliver the highest initial specific capacity of 
~330 mAh/g with a CE ≈ 83%. The rate performance of HC15002h at 
various current densities ranging from 0.02 to 0.2 A/g demonstrated a 
high specific capacity at a low-current density of 0.02 A/g, but also an 
excellent rate performance among other hard carbons derived from 
biomass (Fig. 21 (c)). For insights into sodium-ion storage mechanisms 
of hard carbons, galvanostatic intermittent titration (GITT) was used to 
measure the Na+ ion diffusion coefficient. Fig. 21 (d) displays the Na+

ion diffusion coefficient of carbonized carbon at 1500◦C during the 
sodiation processes [494]. During the sodiation process at a decreasing 
voltage, Na+ ion diffusion slowed down and, finally, at ~0.06 V a sharp 
decrease in the diffusion coefficient was observed. At voltages <0.03 V, 
a large increase in the diffusion coefficient was again registered, which 
decreased until the cutoff voltage was reached. The low diffusion coef-
ficient of Na+ ions at low voltages and the high diffusion coefficient at 
high voltages corresponded with the plateau and sloping voltage regions 
of the discharging profile, respectively. The researchers related the 
higher diffusion coefficient in the sloping region to an easier adsorption 

of Na+ ions at the edges and surface defects of the graphene layers. The 
sharp decrease in the diffusion coefficient at ~0.1 V represented kinetic 
barriers due to electrostatic repulsion during the intercalation of Na+

ions into the graphene interlayers. This repulsive force explained the 
severe capacity fading in the plateau voltage region at high current 
densities. The sudden increase in the diffusion coefficient at voltages 
<0.04 V corresponded to sodium metal-nanovoid filling [494]. In the 
voltage range of 0-1.0 V, the Na+ ion diffusion coefficient was two or-
ders of magnitude lower than the diffusion coefficient of Li+ ions into 
graphite [500]. 

Another mechanistic consideration focused on the storage charac-
teristic of Na inside mesoporous hard carbon. The voltage sloping region 
was related to Na+ ion insertion into the spacing between the graphene 
layers and the low voltage plateau region was attributed to Na filling/ 
plating into nanopores [185,501,502] (Fig. 22 (a)). Therefore, a large 
number of available mesopores indicates an extended low-voltage 
plateau upon sodiation [253]. A decrease in the electron-density 
contrast between the carbon matrix and the nanopores was detected 
by ex situ small-angle X-ray scattering (SAXS) at voltages of 0, 0.2, and 2 
V, and indicated that Na+ ions filled the nanopores. As seen in Fig. 22 
(b), the scattering intensity around 0.03–0.07 Å− 1 (14-33 Å), which was 
attributed to the nanopores in this hard carbon, decreased reversibly, 
pointing to a decrease in the electron-density contrast between the 
carbon matrix and the nanopores [503]. 

The interlayer spacing in glucose-derived hard carbons was enlarged 
by shifting the broad Bragg 002 reflection to lower diffraction angles at 
0.2 V as compared with the pristine electrode. This observation was 
accompanied by a complementary red shift of the Raman G-band at the 
same sloping voltage. Collectively, these observations confirm that the 
voltage-sloping region resulted from Na+ ion insertion into the graphene 
interlayers [427]. The red shift of the G-band towards lower frequencies 
or wavenumbers resulted from the intercalation of the Na+ ion between 

Fig. 21. a) Schematic illustration of the adsorption–intercalation mechanism for Na+ ion storage in hard carbon [424]. b) Galvanostatic charge/discharge profiles of 
carbon derived from mangosteen shells carbonized at 1500◦C for 0.5 h ≤ t ≤ 5h obtained at 0.02 A/g in the voltage range of 0− 2 V. c) Cycling performance of hard 
carbons at various current densities from 0.02 to 0.2 A/g [494], and d) Na+ ion diffusion coefficient determined from GITT experiments during the sodiation in the 
second cycle for HC1500C2h at 0.02 A/g [494]. Adopted from mentioned references after the required permission. 

N. Soltani et al.                                                                                                                                                                                                                                 



Progress in Energy and Combustion Science 87 (2021) 100929

29

the graphene layers, which was visualized by electron-density changes 
on the layer and led to a weakening of the interlayer C-C bonds [505]. 
This electron density was accordingly transferred into an antibonding π 
band of graphene layers [506]. During the intercalation of Na+ ions into 
graphene interlayers, the IG/ID ratio decreased as the discharge voltage 
was lowered. The intensity of the G-band dropped dramatically when 
the voltage reached 0.1 V, whereas the D-band intensity remained 
constant until the final discharge voltage of 0 V [427]. However, in the 
voltage region of 0.1 V ≥ U ≥ 0 V, the width of the D-band increased 
significantly and was blue-shifted towards higher wavenumbers [506]. 

Reddy et al. [502] reported similar results for carbonized coconut 
shells. Fig. 22 (c) displays the discharge-charge profiles of such a hard 
carbon electrode. They suggested that the sloping stage at higher volt-
ages between 1.2 and 0.1 V vs. Na+/Na corresponded with Na+ ion 
adsorption on reactive surface sites and Na+ ion insertion at defect sites 
and between layers up to NaC24. Further, the accommodation of metallic 
Na in the nanopores occurred in the plateau region at 0.1-0.0 V vs. 
Na+/Na. However, the defect concentration should not be too high, 
because the activation barriers for the Na+ ion diffusion increase 
considerably close to defect sites, and these increased barriers could be 
an explanation for part of the irreversible capacity. The initial charge 
capacity was 254 mAh/g, with an irreversible capacity loss of 95 mAh/g. 
Stratford et al. [504] also proposed a two-stage mechanism for insertion 
of Na+ ions into hard carbons. These researchers found that operando 
23Na ssNMR spectra were dominated by two peaks at -10 ppm and 1135 
ppm for the pristine electrochemical cell corresponding to the NaPF6 in 
the electrolyte and the Na metal counter electrode, respectively. In the 
electrochemical process at voltages ~0.8 V, a single resonance initially 
appeared close to 0 ppm. The observed peak at ~0 ppm was related to 
the formation of the SEI layer related to electrolyte decomposition. At 
the sloping region close to a voltage of 0.8 V, the signal shifted to a 
negative frequency of -40 ppm. However, a small negative shift at -4 

ppm was detected by ex situ 23Na MAS NMR. These observations indi-
cated the transfer of charge from inserted Na to carbon sheets at higher 
voltages associated with a localized charge near the carbon defects and 
not throughout the whole graphene sheets. The researchers therefore 
suggested that at higher voltages Na is largely deposited on pore walls 
and in larger interlayer regions, most likely near defects. Finally, by 
reaching a voltage below 0.18 V, an additional signal at a positive fre-
quency of 760 ppm emerged (Fig. 22 (d)) which implied that the sodium 
species became metallic during the electrochemical process. They 
concluded regarding the strong ionic binding energy between the Na+

ions and the defects (mono- and divacancies), and the weakened van der 
Waals interaction, that Na+ ion intercalation was enhanced greatly at 
higher voltages. At lower voltages, the Na+− C interaction gradually 
became less ionic and the charge transfer to the Na+ ions increased, 
which finally resulted in the extension of Na clusters as more metallic 
into the pore structure. However, at lower voltages the Na+ iintercala-
tion between disordered graphene layers continued. 

Yet another scenario is discussed in a mechanistic sense to under-
stand the underlying process in the sloping and plateau regions. The 
sloping region in the voltage range of 1 V ≥ U ≥ 0.1 V is considered to 
belong to Na+ ion adsorption at disordered graphene layers of the hard 
carbon material and the plateau region at ≈0.1 V is related to nanopore 
filling. Zhang et al. [507] investigated a polyacrylonitrile (PAN) 
carbonized at temperatures higher than 1000◦C. Here, the sloping re-
gion was related to Na+ ion storage on isolated or randomly oriented 
graphene layers and defect sites created by heteroatoms. The high spe-
cific charging capacity obtained at voltages ≥1 V was most likely 
reached by the high content of heteroatoms. The constancy of the 
d-spacing of the carbonized PAN during Na+ ion storage showed a 
relationship of the development of the plateau region and the nanopore 
filling. By increasing the temperature above 2000◦C, the sloping region 
diminished because of the improved ordering of graphene layers and the 

Fig. 22. a) Schematic illustration of the intercalation–adsorption mechanism for Na+ ion storage in hard carbons mechanism [502]. b) Ex situ SAXS patterns for hard 
carbon electrodes: (a) pristine, galvanostatically reduced to (b) 0.20 V, (c) 0.00 V, and d) reoxidized to 2.00 V in 1 mol/dm3 NaClO4 PC [503]. c) Discharge-charge 
profiles of a carbonized coconut shell electrode for the first few cycles obtained in 1.0 M NaClO4 in PC as the electrolyte [502], and d) operando 23Na ssNMR spectra 
with selected spectra for hard carbon/Na with NaPF6 as a electrolyte. The cell was cycled at a rate of C/20 (to achieve a capacity of 300 mA h/g in 20 hours) between 
2 and 0.05 V, and held at the end of each discharge until the current dropped to below C/100 [504]. Adopted from mentioned references after the 
required permission. 
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removal of the heteroatoms. A single plateau at almost 0.1 V with a 
capacity of ≈200 mAh/g remained. In the study of Kano et al. [508], 
hard carbons prepared at 2600◦C with a high volume of closed pores of 
0.37 cm3/g yielded a high reversible capacity of up to 413 mAh/g in the 
voltage range of 0.2 to 0.0 V vs. Na+/Na [509]. Kamiyama et al. [510] 
confirmed the participation of the large total volume of the closed pores 
produced at high temperatures to a high specific capacity at U < 0.15 V. 

Zhang et al. [495] demonstrated that the presence of closed pores 
rather than open pores in hard carbons were responsible for Na-metal 
cluster formation. Here, hard carbons derived from lotus stems treated 
at 1400◦C compared to other carbonization temperatures showed the 
highest closed nanopore volume which contributed to the largest 
plateau capacity at low voltage. The researchers assumed that at high 
temperatures open pores due to the internal structure shrinkage were 
sealed and thus, the closed pore ratio reached a maximum for the sample 
treated at 1400◦C. Comparatively, the sample treated at 1400◦C 
exhibited a distinct plateau capacity at -0.01 V, which further proved 
that Na metal deposition was linearly related to the closed pore ratio. 
Kubota et al. [491] suggested that small internal micropores formed at 
low temperatures between the carbon planes are preferable for Li to 
form small and planar clusters, whereas large micropores formed at high 
temperatures support the Na clustering. Additionally, the reversible 
specific sodiation capacities of hard carbons independent of the syn-
thesis temperature are mainly dominated by the formation of pseudo-
metallic Na clusters in micropores. 

4.5. Aspects of the potassium-storage mechanism 

Although the electrochemical properties of Na- and Li-cation storage 
in hard carbons have been discussed in depth, the detailed K-cation 
storage mechanism in hard carbon materials remains unclear. A broadly 
accepted K-storage mechanism in hard carbons is the adsorption- 
intercalation mechanism [313,483,511,512]. 

Alvin et al. [313] suggested that Na and K voltage profiles, besides 
showing the sloping at higher voltages, also displayed plateau regions at 
lower voltages. This observation was in contrast with the voltage profile 
of Li with only a sloping region. The plateau capacities of SIB and KIB 
originate from the ion insertion into the graphitic layers, whereas ion 
adsorption on the defect sites is responsible for the sloping capacities. 
However, the contribution of the capacity in SIB usually attributed to the 
plateau region was more distinct compared to KIBs. As the carbonization 
temperature increased from 1000 to 1500◦C, the sloping capacity in the 
LIB, SIB and KIB gradually decreased, while the low-voltage plateau 
capacity in SIB and KIB increased. They demonstrated that Li+, Na+, and 
K+ ions intercalated into the graphitic domains of lignin derived-hard 
carbons at low voltages of 0, 0.1, and 0.25 V, respectively [313]. Chen 
et al. [511] also confirmed the K+ ion insertion mechanism proposed by 
Alvin et al. [313] but showed a poor rate capability with increasing 
carbonization temperature related to a higher degree of graphitization. 
Along with these observations, Qian et al. [513] were able to follow the 
influence of mesopores on the adsorption and the later intercalation of 
K+ ions into a disordered carbon. According to their results, such pores 
are able to accommodate up to six K+ ions which enhances the transport 
kinetics significantly. Additionally, the IG/ID ratio as a measure of the 
defect concentration in the carbon matrix obtained from Raman spec-
troscopy measurements seem to play a more important role than other 
properties like interlayer distance, adsorption capacity or specific sur-
face area in KIBs. 

Recently, Kubota et al. [491] demonstrated another mechanistic 
consideration focused on the storage of potassium into the spacing be-
tween the graphene layers at a higher voltage, and K+ ion insertion into 
micropores at a low voltage. Within the three sloping potential regions 
of 0.002-0.2, 0.2-0.7, and 0.7-2.0 V vs. K+/K, K+ ions insert first into the 
large graphene interlayer spacing accessible in the high-potential region 
of 0.7-2.0 V vs. K+/K. In a second step, the K+ ions occupy the narrow 
interlayer at the intermediate potential region of 0.2-0.7 V vs. K+/K. The 

third insertion into the micropores takes place in the low potential re-
gion of 0.002-0.2 V vs. K+/K. The carbonization temperature was 
identified as the main influence on the insertion mechanism. For sam-
ples treated at low temperatures the dominant mechanism is the inser-
tion of K+ ions into the larger spacings between the graphene layers 
while higher temperatures support the intercalation of K+ ions into the 
interlayer with small distances. 

Fig. 23 (a-b) present the dQ/dV curves in which intercalation and de- 
intercalation of K+ ions into and out of the hard carbon was started at 0.2 
V and 0.33 V respectively, versus K+/K, whereas both intercalation and 
de-intercalation of Na+ ions were detected at voltages lower than 0.1 V 
versus Na+/Na. This higher intercalation voltage of K+ ions into hard 
carbons enabled them to tolerate the larger potential polarizations at 
higher current densities. Thus, a better rate capability was expected that 
would enable KIBs to perform better than SIBs, especially with respect to 
high-power energy storage applications. Fig. 23 (c-d) display voltage- 
capacity curves during the potassiation/depotassiation and sodium/ 
desodiation of hard carbon electrodes with two sloping and two plateau 
potential regions. At a slow rate of C/10, a reversible capacity of 262 
mAh/g was obtained for the depotassiation process, which is lower than 
322 mAh/g associated with the desodiation process. At C-rates ≥ C/2, 
the capacities of the KIB outperformed those of SIB (Fig. 23 (e)). GITT 
experiments were conducted at C/10 to investigate the cause (Fig. 23 
(f)). Surprisingly, the diffusion coefficient of the K+ ions was determined 
to be slightly higher compared to Na+ ions in both insertion and 
removal. This unexpected difference in the diffusion coefficients was 
explained by different binding energies between K and carbon and Na 
and carbon. A lower charge density of the larger K+ ion, the different 
levels of ionicity of Na+ and K+ ions, and their varying ability to form 
covalent bonds with carbon structural sites were identified as the main 
influences [514]. 

For improving the specific capacity of a KIB at high rates, utilization 
of N-doped hard carbons with a porous surface as anode materials were 
proposed. However, to avoid the low initial CE attributed to the high 
specific surface area of hard carbons, some researchers revealed sodium 
carboxymethylcellulose (CMCNa) as binder which had a significant ef-
fect on the electrochemical performance [515–517]. CMCNa increased 
mechanical strength and stability of the formed SEI and improved the 
initial CE by 10% as compared with polyvinylidene fluoride [518]. 

Hierarchical porous hard carbons with a specific surface area of 1030 
m2/g were subjected to dual-heteroatom doping (N and O). This pro-
cedure led to specific capacities of 365 and 118 mAh/g at 0.025 and 3 A/ 
g, respectively. The quasi-rectangular shape of the CV suggests that the 
total K charge storage results from a faradaic insertion/extraction of K+

ions and a reversible non-faradaic adsorption, whereas the contribution 
of the non-faradaic adsorption becomes more significant at higher rates 
[515]. Chen et al. [430] reported the synthesis of shrimp shell-derived 
hierarchically porous nitrogen-doped carbon microspheres. The spe-
cific capacity of 154 mAh/g at a high rate of 72 C and great cyclic ca-
pacity of 180 mAh/g at 1.8 C over 4000 cycles demonstrated a 
promising performance of this porous carbon as anode material in KIBs. 
The investigated hierarchically porous and additionally nitrogen-doped 
microstructure of the obtained carbon caused a capacitive (surface--
driven) process that dominated the charge-storage behavior. In the 
voltage profile, no obvious plateau at ~0.2 V corresponding to K+

intercalation was detected, which underlined that the majority of the 
capacity resulted from the surface-driven reaction in the sloping region. 
The valence-electron density of the K atom was totally transferred to the 
bonding carbon in this example and was accumulated around the 
N-doping site. In addition, DFT calculations revealed that pyridinic N, 
which was identified as the dominating N species in the obtained porous 
carbon, increased the amount of ionic K− C bonds around itself and thus 
led to stronger K+ ion adsorption. These results clearly point to the 
contribution of N doping to improve the performance of potassium-ion 
batteries. 
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4.6. Summary of the biomass-derived carbons and their respective battery 
performances 

Table 2 presents a comprehensive comparison of all affecting aspects 
of the biomass-derived carbons synthesized by various methods. To 
date, many groups tried to modify the carbon structure using various 
methods to improve the performance of these materials as potential 
anodes in batteries. However, a systematical understanding of the 
overall functioning of hard carbons in batteries is challenging and still a 
subject of controversy. Mainly the uncontrolled heterogeneity of the 
carbon materials obtained from different biomass sources by distinct 
synthesis approaches is the most important reason. Generally, some 
carbon materials inherit their biomass structure, while others are 
modified by more complex methods to obtain the desired structure, such 
as particles, nanofibers and nanotubes. Significant results were achieved 
to control the final carbon porosity content, size and shape in order to 
improve its performance in the final battery. In addition, doping the 
carbon, with elements such as B, N, F, P or metals with electron acceptor 
or donor capability in order to modify crystallite domains, interlayer 
distances and the number of point defects, is another way to increase the 
efficiency of these materials for battery operation. However, if the defect 
concentration generated around the elements is too high, it will act as an 
obstacle to the free movement of metal ions and electrons or can simply 
trap the adsorbed ions leading to irreversible capacities. 

In all biomass-derived hard carbons, different characteristics like 
inherent porosity and defects, a wide range of interlayer spacings, the 

presence of (natural) doping elements such as N and P, exist simulta-
neously. These synergetic effects make it difficult to understand which 
factor plays a decisive role in increasing battery capacity or long-term 
stability. Nevertheless, the first principle to reach a relatively high and 
stable performance of hard carbon materials is to provide a structure 
facilitating ion movement during charging and discharging. As the 
second, a sufficient electrical conductivity is needed which directly 
impacts the charge transfer. 

Pores can irreversibly trap metal ions, therefore, a low specific sur-
face area of less than 40 m2/g with a low micropore volume is desirable. 
For potassium, even mesopores can be beneficial. A low specific surface 
area can suppress parasitic side reactions, thus reducing irreversible 
capacity losses during the charging and discharging processes. Consid-
ering that, lignin hard carbons with the lowest specific surface area 
exhibit the highest Coulombic efficiency. Moreover, the presence of 
meso- and macropores in lignin-derived hard carbons supports ionic 
diffusion. This effect becomes more pronounced when these pores are 
interconnected. However, the low-potential Na+ ion storage and amount 
of close, non-interconnected pores increase with temperature of the heat 
treatment. Heat treatments of carbons at T > 1500◦C lead to a trans-
formation of open to closed pores. From the other side, increasing the 
distance between carbon layers as well as enhancing the crystallinity can 
support metal ion accommodation, especially in case of Na and K. 
Doping of carbons with some electronegative elements can also help to 
accelerate alkaline ion diffusion and fast charge transfer. 

The electrical conductivity of carbon is the other important factor for 

Fig. 23. dQ /dV profiles of a) potassiation and depot-
assiation, b) sodiation and desodiation of hard carbons. 
Discharge/charge profiles at C/10 in the second cycle of c) 
hard carbon/K half-cell, and d) hard carbon/Na half-cell. e) 
Rate capability performance of hard carbon/K and hard 
carbon/Na half cells, and f) diffusion coefficients calcu-
lated from the GITT experiments for hard carbon/K and 
hard carbon/Na half cells during the second charging cycle. 
Adopted from [514] after the required permission.   
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Table 2 
Biomass-derived hard carbons and their performances as anodes in LIBs, SIBs and KIBs  

Biomass 
resources 

Salt/electrolyte/binder Mass 
loading 

Voltage 
range (V) 

Reversible capacity (mAh/g)/ 
Current density (A/g)/ Cycles 

Morphology/ interlayer distance BET(m2/g)/pore volume 
(cm3/g)/pore diameter(nm) 

LIBs 
Corn cob 

[519] 
1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

5-8 mg 0.01-3 660/0.1/180 Nanosheet /- 719/0.46/2.6 

Indian 
prawn 
shell [520] 

1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

—- 0.01-3 730/0.1/150 N-doped spherical particles / 0.35 
nm 

336/–/2-50 

Coffee 
grounds 
[521] 

1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

25 µm 0-3 285/0.1/100 Irregular shape /– <10/non-porous 

Coir pith 
[522] 

1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

~12 g/ 
m2 

0.01-3 837/0.1/50 Carbon sheet 2500/–/1.4-1.7 

Sugarcane 
bagasse 
[523] 

1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PTFE 

30 g/m2 0.01–3 1052/0.1/80 N-doped interconnected 
frameworks structure 

1940/1.3/3.2 

Mangrove 
charcoal 
[524] 

1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

—- 0-1.5 350/0.03/50 Quasi-spherical structural 
including disoriented graphene 
layer 

— 

Rice straw 
[525] 

1 M LiPF6 EC:DMC (1:1, v/ 
v) and FEC/ PVDF 

—- 0-3 137/3.75/10 Fibers 243/0.41/0-25 

Pinecone 
[526] 

1 M LiPF6 EC:DMC:EMC 
(1:1:1, v/v/v)/ PVDF 

—- 0.02- 2 394/0.007/8 microporous 380/0.2/1-2 

Peanut shell 
[527] 

1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

1.4 mg 0.01-3 474/1/400 3D connected porous structure 706/–/<2 

Banana peel 
[104] 

1 M LiPF6 EC:DMC:DEC 
(1:1:1, v/v/v)/ PVDF 

10 g/m2 0.001-2.8 221/0.5/600 Irregular shape /0.39 130/0.19/~3 

Bamboo 
[528] 

1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

—- 0-2 116/0.5/500 Microtubular carbon fibers / 0.39- 
0.4 

29/0.04/<10 

Orange peel 
[529] 

1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

—- 0.01-3 301/1/100 Irregular shape 638/–/<2 

Fish scale 
[530] 

1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

3.5-4 g/ 
m2 

0.01-2.5 390/0.4/75 N- doped interconnected porous 
structure / 0.38 

1980/0.93/4-30 

Cattle bone 
[531] 

1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

8-10 g/ 
m2 

0.01-3 1488/1/250 Fiber bundle-like structure 2096/1.83/4 

Ramie fiber 
[519] 

1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

5-8 mg 0.01-3 523/0.1/180 3D rod-like micro-structure /– 344/0.22/2.53 

Tea leaves 
[532] 

1 M LiPF6 EC:DMC:EMC 
(1:1:1, v/v/v)/ PVDF 

50 µm 0.005-3 471/0.037/50 Irregular microporous structure 146/0.05/5 

Cherry 
stone [533] 

1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

—- 0-3 270/0.37/100 Irregular microporous structure 549/0.31/– 

Olive stone 
[533] 

1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

—- 0-3 180/0.074/100 Irregular microporous structure 587/0.33/– 

Human hair 
[534] 

1 M LiPF6 EC:DMC (1:1, v/ 
v)/ PVDF 

13 g/m2 0-3 1331/0.1/50 3D connected porous structure 1250/ –/1-4 

Coconut oil 
[405] 

1 M LiPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

1.5 mg 0.005-3 577/0.1/20 Quasi-porous spherical 
morphology 

133/–/– 

Mushrooms 
[535] 

1 M LiPF6 EC:DMC (1:1, v/ 
v)/ no binder 

0.5 mg 0.01-3 260/0.1/700 Hierarchically porous carbon 
nanoribbons 

19.6/–/6-26 

Cashew nut 
sheath 
[536] 

—— —- 0.01-3 620/0.1/100 Porous particle 1967/0.876/2-8 

Walnut shell 
[537] 

1 M LiPF6 EC:DMC (1:1, v/ 
v)/PVDF 

—- 0.01-3 150/0.1/100 Nano fibers 408/0.25/0.8-1 

SIBs 
Corn cob 

[499] 
0.6 M NaPF6 in EC:DMC (1: 
1 V)/ Sodium alginate 

20-30 g/ 
m2 

0-2 275/0.06/100 Irregular non-porous particles 
/0.398 

3.7/–/– 

Shaddock 
peel [538] 

1M NaClO4 EC:DEC (1:1, v/ 
v)/ PVDF 

—- 0-3 350/0.05/250 Honeycomb-like morphology/0.38 82/0.049/0.6-15 

Indian 
prawn 
shell [520] 

1M NaPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

—- 0.01-3 325/0.1/200 N-doped spherical particles/ 0.35 
nm 

336/–/2-50 

Coffee 
grounds 
[523] 

1 M NaClO4/ TEGDME/ 
PVDF 

—- 0.01-3 154/0.2/50 Irregular porous particles /– 94/–/10-30 

Coir pith 
[539] 

1 M NaClO4  EC: PC (1:1 v/ 
v)/ PVDF 

20 g/m2 0.01-3 220/0.05/300 Microporous graphene sheet 2500/–/– 

Sugarcane 
bagasse 
[540] 

1 M NaClO4 EC:DEC (1:1, 
v/v)/ PVDF 

15 g/m2 0.01-2 220/0.1/300 Flake-like morphology /0.374 2/–/– 

Switchgrass 
[541] 

1 M NaClO4  EC:DEC (1:1 
v/v)/ PVDF 

50 g/m2 0.01-2 200/0.025/400 3D structure with linked 
macropores 

620/–/1.7-110 

Mangrove 
charcoal 
[542] 

1 M NaPF6 PC/ SBR-CMC —- 0-2 278/0.03/5 Irregular shape/0.37 6.8/–/~0.52 

(continued on next page) 
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Table 2 (continued ) 

Biomass 
resources 

Salt/electrolyte/binder Mass 
loading 

Voltage 
range (V) 

Reversible capacity (mAh/g)/ 
Current density (A/g)/ Cycles 

Morphology/ interlayer distance BET(m2/g)/pore volume 
(cm3/g)/pore diameter(nm) 

Rice straw 
[543] 

1 M NaClO4 EC:DEC (1:1, 
v/v)/ PVDF 

10-15 g/ 
m2 

0.01-2 346/0.025/100 Irregular granular shape /0.395 ~0/~0/undetectable 

Pinecone 
[102] 

1 M NaClO4 EC:DEC (1:1, 
v/v)/ CMC 

15-25 g/ 
m2 

0.001-2 334/0.03/120 Irregular shape /0.381 40/0.03/3 

Argan shell 
[544] 

1 M NaPF6  EC: DEC (1:1, v/ 
v)/ PVDF 

12-20 g/ 
m2 

0-2 300/0.025/70 Irregularly shape /0.385 24/0.018/3 

Peanut shell 
[527] 

1 M NaClO4 EC:DEC (1:1, 
v/v)/ PVDF 

1.4 mg 0.01-3 190/0.25/400 3D connected porous structure 706/– /<2 

Banana peel 
[104] 

1 M NaClO4 EC:DEC (1:1, 
v/v)/ PVDF 

—- 0.001-2.8 210/0.5/600 Irregular shape /0.39 130/0.19/ ~3 

Orange peel 
[529] 

1 M NaClO4 EC:DEC (1:1, 
v/v)/ PVDF 

—- 0.01-3 156/0.5/100 Irregular shape 638/–/<2 

Apple [545] 1 M NaClO4 EC/PC (1:1, v/ 
v)/ CMC 

22-25 g/ 
m2 

0.02-3 245/0.02/80 Irregular shape /0.385 196/–/– 

Ramie fiber 
[519] 

1 M NaClO4 EC: DEC(1:1, 
v/v)/ PVDF 

—- 0.01-3 122/0.1/100 Nano-sheet/- 719/0.46/2.6 

Bamboo 
[528] 

1 M NaClO4  EC:DMC (1:1, 
v/v) and FEC/ PVDF 

—- 0-2 200/0.1/160 Microtubular carbon fibers/0.39- 
0.4 

29/0.04/<10 

Blue-green 
algae [546] 

1 M NaClO4  EC:DEC (1:1, 
v/v)/ PVDF 

—- 0.01-2.5 230/0.02/60 Carbon filament/0.36 – 

Wheat straw 
[547] 

1 M NaClO4 EC:DEC (1:1, 
v/v)/ PVDF 

—- 0.01-3 221/0.05/200 Linked tubular macropores/ 0.383 111/0.09/3.8 

Coconut oil 
[405] 

1 M NaClO4 EC:PC (1:1, v/ 
v) and FEC/ PVDF 

1.5 mg 0.005-3 203/0.1/50 Quasi-spherical morphology 133/–/– 

Cashew nut 
sheath 
[536] 

—— —- 0.01-3.0 200/0.1/100 Porous particle 1967/0.876/2-8 

Cotton [184] 0.8 M NaPF6 EC: DMC (1:1, 
v/v)/ Sodium alginate 

25-35 g/ 
m2 

0-2 305/0.03/100 Hollow fibers with diameters 
around 10-20 μm/0.41 

38/–/1-1.5 

Egg shell 
[548] 

1 M NaClO4 PC/PVDF 10-15 g/ 
m2 

0.001-3 246/0.05/200 Carbon fibers 28/–/– 

Walnut shell 
[549] 

1 M NaClO4 EC:DMC (1:1, 
v/v) and FEC/ PVDF 

2-3 mg 0.01-3 170/0.1/300 Continuous pore channel shape 
/0.37 

59/–/– 

Pistachio 
shell [550] 

1 M NaClO4 EC:PC (1:1, v/ 
v)/ PVDF 

—- 0.001-2 185/0.6/500 Irregular shape/0.36 137/0.06/0.74 

Holly leaf 
[551] 

1 M NaClO4 EC:DEC (1:1, 
v/v)/ PVDF 

—- 0.01-3 253/0.02/100 Lamellar structure/– –/–/1 

Pomelo 
peels [450] 

1 M NaClO4 EC:PC (1:1, v/ 
v)/ PVDF 

—- 0-3 181/0.2/220 Carbon sheets with 3D connected 
porous structure / 

1272/–/4-23 

Peat moss 
[250] 

1 M NaClO4 EC: DEC (1:1, 
v/v)/ PVDF 

10 g/m2 0.001-2.8 255/0.1/200 Nanosheets with hollow 
macroporous architecture /0.388 

197/0.18/<4 

Wood 
cellulose 
[552] 

1 M NaClO4  EC:DEC (1:1, 
v/v)/ no binder 

25 g/m2 0.01-2.5 196/0.1/200 Ribbon-like structure 126/–/– 

Okara [127] 1 M NaClO4 EC: DMC (1:1, 
v/v) and FEC/ PTFE 

14 g/m2 0.01 -2 247/0.11/50 N-doped- loosely packed graphitic 
sheets /0.39 

– 

Lotus 
petiole 
[343] 

1 M NaClO4 EC:DEC (1:1, 
v/v)/ PVDF 

10-15 g/ 
m2 

0.001-2.8 228/0.2/200 F doped-Irregulat shape/0.4 46/–/– 

Apricot 
shell [144] 

1 M NaClO4 EC:DEC (1:1, 
v/v)/ PVDF 

12 g/m2 0-2.5 338/0.1/300 3D connected porous structure 
/0.38 

13/– 

Dandelions 
[103] 

1 M NaClO4 EC:DEC (1:1, 
v/v)/ PVDF 

10-20 g/ 
m2 

0.001-3 364/0.05/10 Smooth hollow tube/0.37 5/– 

Coconut 
shell [502] 

1 M NaClO4 PC and FEC/ 
PVDF 

15-20 g/ 
m2 

0-2 250/0.01/40 Irregular shape/– – 

KIBs 
Potato [553] 3M KFSI DME/PVDF 8-12 g/ 

m2 
0.01-2.7 196/0.5/400 Irregular shape/– 531/–/9.2 

Ganoderma 
lucidum 
spore 
[554] 

1.0 M KPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

—- 0.02–3 195/0.1/100 Caged porous carbon/– 104/–/– 

Walnut 
septum 
[555] 

0.8 M KPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

—- 0.005- 3 120/1/1000 N-doped porous tubular 
structures/0.376 

100/–/20 

Loofah [489] 1.0 M KPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

10-20 g/ 
m2 

0.01-3 150/0.1/200 honeycomb-like micro-tubular 
structure 

270/0.17/3.6 

Cotton [556] 1.0 M KPF6 DME/ PVDF —- 0-2 120/2/500 Hollow fiber structure 427/–/1.88 
Soybeans 

[483] 
0.8 M KPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

15 g/m2 0.01-3 196/0.05/900 Irregular shape/0.38 380/0.19/2 

Hard-wood 
(oak) [557] 

0.4 M KPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

2.4 mg 0.01-2.5 150/0.1/150 Interwoven nanoporous channels/ 
0.4 

156/–/3-20 

Sucrose 
[557] 

0.4 M KPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

20 g/m2 0.01-2.5 50/0.1/150 Porous spherical particle /0.4 65/– 

—- 0.01-3 180/0.5/4000 N-doped porous microspheres 563/–/10 

(continued on next page) 
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battery performance. Hard carbons with a low density of less than 1.5 g/ 
cm3 hamper a preparation of thin conductive electrodes, having less 
contact to the current collector. To decrease the thickness of the elec-
trode, hard carbons with a low specific surface area and random mor-
phologies including broad particle size distribution for dense 
compacting are desired. 

Furthermore, low intrinsic electrical conductivity and unsatisfactory 
rate performance of the biomass-derived hard carbon carbon are mainly 
linked to its disordered structure. The graphitization of a non-ordered 
carbon structure using transition metals as catalysts to have a non- 
graphitic/graphitic composite matrix, or modification of the graphene 
layer structure with elements such as nitrogen, can increase the elec-
trical conductivity. Among biomass waste materials, those with high 
cellulose content showed higher degrees of graphitization compared to 
that of materials enriched with lignin even at high temperatures 
(>2000◦C). However, cellulose has a low carbon content that makes it 
economically unsuitable for extensive use. Therefore, specific modifi-
cation of lignin with its higher carbon content, e.g. by iron-catalyzed 
processes, can yield larger amounts of an electrically higher conduc-
tive material. 

5. Summary and outlook 

Rechargeable alkali metal-ion batteries are already well established 
for many devices that require cordless power supply. These applications 
are realized primarily by batteries with lithium-based chemistries 
because lithium enables high energy power (e.g. for tools) or high en-
ergy density needed for vehicles in versatile battery architectures. 
Despite the advantages of lithium-based batteries, the limited avail-
ability of lithium may help to support the breakthrough of rechargeable 
sodium and potassium batteries. Indeed, the last 10 years have wit-
nessed great effort toward making such batteries into promising candi-
dates for next-generation energy storage devices. However, these 
devices still need materials with even higher electrode performance, 
especially to improve power and energy density. 

Graphite is to date the most used anode material in LIBs, which also 
promises for suitable electrochemical storage performance properties 
for sodium- and potassium-ion batteries. However, the large Coulombic 
repulsion between lithium cations in the nearest-neighbor sites and the 
ineffectiveness of graphite to accommodate noteworthy concentrations 
of sodium cations between the graphene layers restricts the storage of 
large amount of heavier alkali metal ions in graphite. 

Nevertheless, in the process of purifying natural graphite, hydro-
fluoric acid must be used to remove silicate impurities. Intensive use of 
this toxic acid can pose detrimental impact on the environment. Syn-
thetic graphite produced from coking natural pitches or residues of 
crude-oil distillation at 2500–3000◦C with better performance and 
reliability compared to natural graphite still suffers from the long pro-
duction process and high energy consumption. The use of fossil fuels to 
support its production process results in additional CO2 emission 
(7.5–9.9 kg CO2 per kWh) [558]. Thus, it is mandartory to progressively 
introduce domestic, sustainable, and non-toxic sources to synthesize 
graphite anodes at relatively low temperatures and without the use of 
hydrofluoric acid. 

Hard carbon is typically produced from fossil sources and biomass. It 
represents a non-graphitizable, amorphous carbon with randomly 

distributed clusters of partially oriented graphene sheets, and can offer 
more active storage sites and show better electrochemical performance 
than the highly ordered graphite. 

However, the cost of carbon from fossil sources is unpredictable as it 
is related to, e.g. the price of crude oil in stock exchanges or nowadays to 
climate taxes, as such a carbon is not sustainable. By contrast, biomass 
from different sources, including wastes, offers versatile carbon struc-
tures and an easy and generally cost-effective carbonization strategy, 
with an increasing economic value by the finishing to a high-value 
product. Biomass-derived carbon products of different structure 
dimensionality have received an increasing level of interest for the 
fabrication of electrodes for energy storage devices. The focus has 
initially been set on applications as anodes in alkali metal-ion batteries. 
Nevertheless, the application of biomass-derived hard carbons in a 
cathode composite may also be valuable for improving the performance 
of alkali-metal batteries, especially SIBs and KIBs [439]. 

However, some barriers need to be overcome to industrially produce 
carbon from most biomass sources for application as anodes. Sources of 
biomass are quite diffuse and may not be available in sufficient quan-
tities. Many sources also suffer from a low carbon yield and substantial 
efforts for purification are required. In view of the typically non-uniform 
structure of biomass, it may remain challenging to reproduce the 
carbonization process on an industrial scale, in particular, to safely 
control the morphology and structure of the biomass-derived carbon to 
guarantee a product with constant properties. This aspect can be 
considered as the skeleton key to its use as anode materials in a battery. 
Indeed, the chemical composition of the same type of biomass can vary 
based on soil feeding type, age of the plants, fertilizer and pesticide dose, 
harvesting time, and the climate and geographical conditions [49,559, 
560]. Although this composition variation of biomass growing at 
different conditions are not significant. It can change between 38-44% 
for cellulose, 20-23% for hemicellulose and 18-22 % for lignin [561]. 
Therefore, it is crucial that future work provides deeper insights into 
understanding of the composition of biomass precursors and the 
mechanisms underlying the biomass-related effects and properties of the 
final carbon. 

As a further subject, the broad use of biomass resources to create 
sustainable and eco-friendly batteries should be scrutinized. One 
important milestone for battery use is the zero CO2 emission electric 
vehicle (EV). Beside the aspect of non-fossil fuel power generation for 
the climate neutral EV, producing carbons from phytomass as plants or 
utilizing waste biomass can actively store larger amounts of CO2 and can 
be one important part in the mission to keep the CO2 value at least 
constant.  Biomass sources themselves reduce our dependence on fossil 
fuels can decrease greenhouse gas emissions. However, this idea is 
working for fast growing plants and that as fast as the biomass is burned, 
new trees or plants take up CO2 produced by the combustion. Thus, the 
CO2 cycle theoretically remains in balance, and no extra carbon is added 
to the environment. Some possible solutions and outlooks can be found 
elsewhere [562–565]. In addition, when the battery electrodesreach 
their end-of-life, they could be decomposed biologically or incinerated, 
and its compounds can be recycled to the environment. 

Beside all positive aspects, negative sides are identified as well and 
need to be solved to avoid environmental and social discrepancies or 
worse. Disturbing the balance of an ecological or a social system can be 
disastrous that may comprise economic reasons like land speculation, 

Table 2 (continued ) 

Biomass 
resources 

Salt/electrolyte/binder Mass 
loading 

Voltage 
range (V) 

Reversible capacity (mAh/g)/ 
Current density (A/g)/ Cycles 

Morphology/ interlayer distance BET(m2/g)/pore volume 
(cm3/g)/pore diameter(nm) 

Sea food 
waste 
[430] 

0.8 M KPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

Rice husk 
[512] 

0.8 M KPF6 EC:DEC (1:1, v/ 
v)/ PVDF 

15 g/m2 0.01–3 103/0.5/300 Irregular shape/0.39 115/0.13/<3  
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concurring crops like food vs. energy production, monocultures, 
extended land or water consumption to name just a few [566–568]. Even 
continuously removing “waste” biomass from the natural life cycle, that 
would otherwise become mixed manure at natural conditions, may have 
long-term negative effects on soil fertility and wildlife habitat [569]. 
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