94 research outputs found

    Retrospective analysis of fish community change during a half-century of landuse and streamflow changes.

    Get PDF
    Ecological thresholds that lead to alternative community states can be exceeded through gradual perturbation or as a result of sudden disturbance. Many Great Plains streams have experienced dramatic changes in their hydrologic regime resulting from water and landuse changes that began as early as 1880. These changes, combined with the presence of many invasive species, have substantially altered the fish communities in this area. We quantified temporal changes in fish communities in 3 large river basins in relation to putative anthropogenic stressors, including increased sediment supply derived from row-crop agriculture (beginning in 1880), habitat fragmentation caused by reservoir construction (beginning in the 1950s), and reduced discharge caused by groundwater withdrawal (beginning in the 1960s). We hypothesized that these abiotic regime shifts, coupled with species invasions, would shift the system from a fish community dominated by lotic (flowing water) species to one dominated by lentic (still water) species. Further, we predicted that the timing and intensity of community change would vary across basins that experienced different types and levels of stressors. Restructuring of fish communities across the 3 river basins was driven primarily by similar increases in lentic species, with only a few declines in several large-river species. Current fish communities in these basins share ,50% of the species recorded in historic collections, and these differences were driven by species extirpations and invasions. The greatest levels of community divergence over time occurred in western Kansas basins that experienced the most intense groundwater withdrawals and fragmentation by reservoirs. An alarming result from this analysis was the recent (after 1991) expansion of several invasive species in the Arkansas and lower Kansas River basins and the decline or extirpation of several native species where flow regimes are less heavily altered. Accelerating changes in the biota and habitat identified by our retrospective analysis highlight potential complications for restoring the habitat and native fish communities to a previous state

    The Stream Biome Gradient Concept: factors controlling lotic systems across broad biogeographic scales

    Get PDF
    Citation: Dodds, W. K., Gido, K., Whiles, M. R., Daniels, M. D., & Grudzinski, B. P. (2015). The Stream Biome Gradient Concept: factors controlling lotic systems across broad biogeographic scales. Freshwater Science, 34(1), 1-19. doi:10.1086/679756We propose the Stream Biome Gradient Concept as a way to predict macroscale biological patterns in streams. This concept is based on the hypothesis that many abiotic and biotic features of streams change predictably along climate (temperature and precipitation) gradients because of direct influences of climate on hydrology, geomorphology, and interactions mediated by terrestrial vegetation. The Stream Biome Gradient Concept generates testable hypotheses related to continental variation among streams worldwide and allows aquatic scientists to understand how results from one biome might apply to a less-studied biome. Some predicted factors change monotonically across the biome/climate gradients, whereas others have maxima or minima in the central portion of the gradient. For example, predictions across the gradient from drier deserts through grasslands to wetter forests include more permanent flow, less bare ground, lower erosion and sediment transport rates, decreased importance of autochthonous C inputs to food webs, and greater stream animal species richness. In contrast, effects of large ungulate grazers on streams are expected to be greater in grasslands than in forests or deserts, and fire is expected to have weaker effects in grassland streams than in desert and forest streams along biome gradients with changing precipitation and constant latitude or elevation. Understanding historic patterns among biomes can help describe the evolutionary template at relevant biogeographic scales, can be used to broaden other conceptual models of stream ecology, and could lead to better management and conservation across the broadest scales

    Consumer Return Chronology Alters Recovery Trajectory of Stream Ecosystem Structure and Function Following Drought

    Get PDF
    Consumers are increasingly being recognized as important drivers of ecological succession, yet it is still hard to predict the nature and direction of consumer effects in nonequilibrium environments. We used stream consumer exclosures and large outdoor mesocosms to study the impact of macroconsumers (i.e., fish and crayfish) on recovery of intermittent prairie streams after drying. In the stream, macroconsumers altered system recovery trajectory by decreasing algal and macroinvertebrate biomass, primary productivity, and benthic nutrient uptake rates. However, macroconsumer influence was transient, and differences between exclosures and controls disappeared after 35 days. Introducing and removing macroconsumers after 28 days resulted mainly in changes to macroinvertebrates. In mesocosms, a dominant consumer (the grazing minnow Phoxinus erythrogaster) reduced macroinvertebrate biomass but had little effect on algal assemblage structure and ecosystem rates during recovery. The weak effect of P. erythrogaster in mesocosms, in contrast to the strong consumer effect in the natural stream, suggests that both timing and diversity of returning consumers are important to their overall influence on stream recovery patterns. Although we found that consumers significantly altered ecosystem structure and function in a system experiencing rapid changes in abiotic and biotic factors following disturbance, consumer effects diminished over time and trajectories converged to similar states with respect to primary producers, in spite of differences in consumer colonization history. Thus, consumer impacts can be substantial in recovering ecosystems and are likely to be dependent on the disturbance regime and diversity of the consumer community

    Fragmentation and dewatering transform Great Plains stream fish communities

    Get PDF
    Citation: Perkin, J. S., Gido, K. B., Cooper, A. R., Turner, T. F., Osborne, M. J., Johnson, E. R., & Mayes, K. B. (2015). Fragmentation and dewatering transform Great Plains stream fish communities. Ecological Monographs, 85(1), 73-92. doi:10.1890/14-0121.1Biodiversity in stream networks is threatened globally by interactions between habitat fragmentation and altered hydrologic regimes. In the Great Plains of North America, stream networks are fragmented by >19000 anthropogenic barriers, and flow regimes are altered by surface water retention and groundwater extraction. We documented the distribution of anthropogenic barriers and dry stream segments in five basins covering the central Great Plains to assess effects of broad-scale environmental change on stream fish community structure and distribution of reproductive guilds. We used an information-theoretic approach to rank competing models in which fragmentation, discharge magnitude, and percentage of time streams had zero flow (a measure of desiccation) were included to predict effects of environmental alterations on the distribution of fishes belonging to different reproductive guilds. Fragmentation caused by anthropogenic barriers was most common in the eastern Great Plains, but stream desiccation became more common to the west, where rivers are underlain by the depleted (i.e., extraction > recharge) High Plains Aquifer. Longitudinal gradients in fragmentation and desiccation contributed to spatial shifts in community structure from taxonomically and functionally diverse communities dominated by pelagic reproductive guilds where fragmentation and desiccation were least, to homogenized communities dominated by benthic guilds where fragmentation and desiccation were common. Modeling results revealed these shifts were primarily associated with decline of pelagic reproductive guilds, notably small-bodied pelagophilic and lithopelagophilic fishes that declined in association with decreased fragment length and increased number of days with zero flow. Graph theory combined with a barrier prioritization approach revealed specific fragments that could be reconnected to allow fishes within these guilds to colonize currently unoccupied fragments with the mitigation or removal of small dams (<10 m height). These findings are useful for natural resource managers charged with halting or reversing the prevailing pattern of declining fish diversity in the Great Plains. Our study represents one of the most comprehensive assessments of fish diversity responses to broad-scale environmental change in the Great Plains and provides a conservation strategy for addressing the simultaneous contributions of fragmentation and flow alteration to the global freshwater biodiversity crisis

    Interfaces of Modulated Phases

    Full text link
    Numerically minimizing a continuous free-energy functional which yields several modulated phases, we obtain the order-parameter profiles and interfacial free energies of symmetric and non-symmetric tilt boundaries within the lamellar phase, and of interfaces between coexisting lamellar, hexagonal, and disordered phases. Our findings agree well with chevron, omega, and T-junction tilt-boundary morphologies observed in diblock copolymers and magnetic garnet films.Comment: 4 page

    Fish Species of Greatest Conservation Need in Wadeable Iowa Streams: Current Status and Effectiveness of Aquatic Gap Program Distribution Models

    Get PDF
    Effective conservation of fish species of greatest conservation need (SGCN) requires an understanding of species– habitat relationships and distributional trends. Thus, modeling the distribution of fish species across large spatial scales may be a valuable tool for conservation planning. Our goals were to evaluate the status of 10 fish SGCN in wadeable Iowa streams and to test the effectiveness of IowaAquatic Gap Analysis Project (IAGAP) species distribution models. We sampled fish assemblages from 86 wadeable stream segments in the Mississippi River drainage of Iowa during 2009 and 2010 to provide contemporary, independent fish species presence–absence data. The frequencies of occurrence in stream segments where species were historically documented varied from 0.0% for redfin shiner Lythrurus umbratilis to 100.0% for American brook lamprey Lampetra appendix, with a mean of 53.0%, suggesting that the status of Iowa fish SGCN is highly variable. Cohen’s kappa values and other model performance measures were calculated by comparing field-collected presence–absence data with IAGAP model–predicted presences and absences for 12 fish SGCN. Kappa values varied from 0.00 to 0.50, with a mean of 0.15. The models only predicted the occurrences of banded darter Etheostoma zonale, southern redbelly dace Phoxinus erythrogaster, and longnose dace Rhinichthys cataractae more accurately than would be expected by chance. Overall, the accuracy of the twelve models was low, with a mean correct classification rate of 58.3%. Poor model performance probably reflects the difficulties associated with modeling the distribution of rare species and the inability of the large-scale habitat variables used in IAGAP models to explain the variation in fish species occurrences. Our results highlight the importance of quantifying the confidence in species distribution model predictions with an independent data set and the need for long-term monitoring to better understand the distributional trends and habitat associations of fish SGCN

    Seasonal Consumptive Demand and Prey Use by Stocked Saugeyes in Ohio Reservoirs

    Get PDF
    Community structure and species composition may be strongly influenced by predator-prey interactions resulting from and leading to episodes of population abundance or scarcity. We quantified diets of stocked saugeyes (female walleye Sander vitreus × male sauger S. canadensis) and estimated biomass of their primary prey, gizzard shad Dorosoma cepedianum, in three Ohio reservoirs at quarterly intervals during July 2002-July 2003 to determine whether saugeye consumptive demand could exceed the supply of available gizzard shad prey, resulting in a shift to alternative prey. We incorporated water temperature and saugeye diet composition, growth, and mortality into walleye bioenergetics models, which allowed us to compare estimated prey-specific consumption rates by saugeyes with gizzard shad standing stocks estimated with acoustics. Spring and summer were critical seasons. During spring, gizzard shad biomass was low, saugeye consumptive demand was low, and saugeyes consumed primarily alternative prey. During summer, when age-0 gizzard shad became available as prey, saugeyes consumed similar proportions of gizzard shad and alternative prey. Saugeye cumulative consumptive demand in summer was high and approached the gizzard shad standing stock. However, during fall and winter, gizzard shad supply was adequate to support high (fall) or declining (winter) saugeye consumptive demand. Across reservoirs and seasons, saugeyes consumed alternative prey to varying degrees, primarily sunfishes Lepomis spp., yellow perch Perca flavescens, logperch Percina caprodes, and minnows Pimephales spp. Seasonal asynchrony between saugeye consumptive demand and gizzard shad biomass during spring and summer indicated that a saugeye population with high survival, growth, and consumptive demand will opportunistically increase use of prey other than gizzard shad. The manner in which saugeye predation quantitatively influences these prey species could not be assessed. However, overexploitation of gizzard shad prey appears to be unlikely at current saugeye population sizes, particularly considering the opportunistic use of alternative prey and the high reproductive potential of gizzard shad.Funding for this research was provided by the Ohio Department of Natural Resources, Division of Wildlife; Federal Aid in Sport Fish Restoration Project F-69-P, Fish Management in Ohio; and the Department of Evolution, Ecology, and Organismal Biology at The Ohio State University

    Developing User‐Friendly Habitat Suitability Tools from Regional Stream Fish Survey Data

    Full text link
    We developed user‐friendly fish habitat suitability tools (plots) for fishery managers in Michigan; these tools are based on driving habitat variables and fish population estimates for several hundred stream sites throughout the state. We generated contour plots to show patterns in fish biomass for over 60 common species (and for 120 species grouped at the family level) in relation to axes of catchment area and low‐flow yield (90% exceedance flow divided by catchment area) and also in relation to axes of mean and weekly range of July temperatures. The plots showed distinct patterns in fish habitat suitability at each level of biological organization studied and were useful for quantitatively comparing river sites. We demonstrate how these plots can be used to support stream management, and we provide examples pertaining to resource assessment, trout stocking, angling regulations, chemical reclamation of marginal trout streams, indicator species, instream flow protection, and habitat restoration. These straightforward and effective tools are electronically available so that managers can easily access and incorporate them into decision protocols and presentations.Received April 9, 2010; accepted November 8, 2010Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141005/1/nafm0041.pd

    Fish assemblage stability over fifty years in the Lake Pontchartrain Estuary; comparisons among habitats using Canonical Correspondence Analysis

    Get PDF
    We assessed fish assemblage stability over the last half century in Lake Pontchartrain, an environmentally degraded oligohaline estuary in southeastern Louisiana. Because assemblage instability over time has been consistently associated with severe habitat degradation, we attempted to determine whether fish assemblages in demersal, nearshore, and pelagic habitats exhibited change that was unrelated to natural fluctuations in environmental variables (e.g., assemblage changes between wet and dry periods). Collection data from three gear types (trawl, beach seine, and gill nets) and monthly environmental data (salinity, temperature, and Secchi depth) were compared for four collecting periods: 1954 (dry period), 1978 (wet period), 1996–1998 (wet period), and 1998–2000 (dry period). Canonical correspondence analysis (CCA) revealed that although the three environmental variables were significantly associated with the distribution and abundance patterns of fish assemblages in all habitats (with the exception of Secchi depth for pelagic samples), most fish assemblage change occurred among sampling periods (i.e., along a temporal gradient unrelated to changing environmental variables). Assemblage instability was the most pronounced for fishes collected by trawls from demersal habitats. A marked lack of cyclicity in the trawl data CCA diagram indicated a shift away from a baseline demersal assemblage of 50 yr ago. Centroid positions for the five most collected species indicated that three benthic fishes, Atlantic croaker (Micropogonias undulatus), spot (Leiostomus xanthurus), and hardhead catfish (Arius felis), were more dominant inWe assessed fish assemblage stability over the last half century in Lake Pontchartrain, an environmentally degraded oligohaline estuary in southeastern Louisiana. Because assemblage instability over time has been consistently associated with severe habitat degradation, we attempted to determine whether fish assemblages in demersal, nearshore, and pelagic habitats exhibited change that was unrelated to natural fluctuations in environmental variables (e.g., assemblage changes between wet and dry periods). Collection data from three gear types (trawl, beach seine, and gill nets) and monthly environmental data (salinity, temperature, and Secchi depth) were compared for four collecting periods: 1954 (dry period), 1978 (wet period), 1996–1998 (wet period), and 1998–2000 (dry period). Canonical correspondence analysis (CCA) revealed that although the three environmental variables were significantly associated with the distribution and abundance patterns of fish assemblages in all habitats (with the exception of Secchi depth for pelagic samples), most fish assemblage change occurred among sampling periods (i.e., along a temporal gradient unrelated to changing environmental variables). Assemblage instability was the most pronounced for fishes collected by trawls from demersal habitats. A marked lack of cyclicity in the trawl data CCA diagram indicated a shift away from a baseline demersal assemblage of 50 yr ago. Centroid positions for the five most collected species indicated that three benthic fishes, Atlantic croaker (Micropogonias undulatus), spot (Leiostomus xanthurus), and hardhead catfish (Arius felis), were more dominant in past demersal assemblages (1954 and 1978). A different situation was shown for planktivorous species collected by trawls with bay anchovy (Anchoa mitchilli) becoming more dominant in recent assemblages and Gulf enhaden (Brevoortia patronus) remaining equally represented in assemblages over time. Changes in fish assemblages from nearshore (beach seine) and pelagic (gill net) habitats were more closely related to environmental fluctuations, though the CCA for beach seine data also indicated a decrease in the dominance of M. undulatus and an increase in the proportion of A. mitchilli over time. The reduced assemblage role of benthic fishes and the marked assemblage change indicated by trawl data suggest that over the last half century demersal habitats in Lake Pontchartrain have been impacted more by multiple anthropogenic stressors than nearshore or pelagic habitats. past demersal assemblages (1954 and 1978). A different situation was shown for planktivorous species collected by trawls with bay anchovy (Anchoa mitchilli) becoming more dominant in recent assemblages and Gulf menhaden (Brevoortia patronus) remaining equally represented in assemblages over time. Changes in fish assemblages from nearshore (beach seine) and pelagic (gill net) habitats were more closely related to environmental fluctuations, though the CCA for beach seine data also indicated a decrease in the dominance of M. undulatus and an increase in the proportion of A. mitchilli over time. The reduced assemblage role of benthic fishes and the marked assemblage change indicated by trawl data suggest that over the last half century demersal habitats in Lake Pontchartrain have been impacted more by multiple anthropogenic stressors than nearshore or pelagic habitats
    corecore