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Fish Assemblage Stability Over Fifty Years in the Lake

Pontchartrain Estuary; Comparisons Among Habitats Using

Canonical Correspondence Analysis

MARTIN T. O’CONNELL1, ROBERT C. CASHNER, and CHRISTOPHER S. SCHIEBLE

Nekton Research Laboratory, Pontchartrain Institute for Environmental Sciences, Department of
Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148

ABSTRACT: We assessed fish assemblage stability over the last half century in Lake Pontchartrain, an environmentally
degraded oligohaline estuary in southeastern Louisiana. Because assemblage instability over time has been consistently
associated with severe habitat degradation, we attempted to determine whether fish assemblages in demersal, nearshore,
and pelagic habitats exhibited change that was unrelated to natural fluctuations in environmental variables (e.g., assem-
blage changes between wet and dry periods). Collection data from three gear types (trawl, beach seine, and gill nets)
and monthly environmental data (salinity, temperature, and Secchi depth) were compared for four collecting periods:
1954 (dry period), 1978 (wet period), 1996–1998 (wet period), and 1998–2000 (dry period). Canonical correspondence
analysis (CCA) revealed that although the three environmental variables were significantly associated with the distribution
and abundance patterns of fish assemblages in all habitats (with the exception of Secchi depth for pelagic samples),
most fish assemblage change occurred among sampling periods (i.e., along a temporal gradient unrelated to changing
environmental variables). Assemblage instability was the most pronounced for fishes collected by trawls from demersal
habitats. A marked lack of cyclicity in the trawl data CCA diagram indicated a shift away from a baseline demersal
assemblage of 50 yr ago. Centroid positions for the five most collected species indicated that three benthic fishes, Atlantic
croaker (Micropogonias undulatus), spot (Leiostomus xanthurus), and hardhead catfish (Arius felis), were more dominant in
past demersal assemblages (1954 and 1978). A different situation was shown for planktivorous species collected by trawls
with bay anchovy (Anchoa mitchilli) becoming more dominant in recent assemblages and Gulf menhaden (Brevoortia
patronus) remaining equally represented in assemblages over time. Changes in fish assemblages from nearshore (beach
seine) and pelagic (gill net) habitats were more closely related to environmental fluctuations, though the CCA for beach
seine data also indicated a decrease in the dominance of M. undulatus and an increase in the proportion of A. mitchilli
over time. The reduced assemblage role of benthic fishes and the marked assemblage change indicated by trawl data
suggest that over the last half century demersal habitats in Lake Pontchartrain have been impacted more by multiple
anthropogenic stressors than nearshore or pelagic habitats.

Introduction

The environmental degradation of essential es-
tuarine habitats in the United States threatens fish-
es of commercial, recreational, and ecological im-
portance (Thayer et al. 1996; Waste 1996; Peterson
et al. 2000; Baltz and Jones 2003). The highly var-
iable physiochemical and biotic nature of estuaries
precludes simple diagnoses of significant environ-
mental problems (Peterson and Ross 1991; Nords-
trom and Roman 1996; Matern et al. 2002). De-
termining the effects of natural and anthropogenic
disturbances on fishes is particularly difficult be-
cause of their mobility relative to other estuarine
organisms (Poff and Allan 1995; Able and Fahay
1998; Wagner 1999). In estuaries, interhabitat
movement, especially by migrating estuarine-de-
pendent fishes, creates temporally dynamic fish

1 Corresponding author; tele: 504/280-4032; fax: 504/280-
4022; e-mail: moconnel@uno.edu

faunas (Thompson and Fitzhugh 1985; Peterson
and Ross 1991). Accurate assessment of fish assem-
blage changes relative to possible habitat degra-
dation effects requires the comparison of data
along large temporal and spatial scales (Poff and
Allan 1995).

Lake Pontchartrain, an oligohaline estuary in
southeastern Louisiana, has been subject to nu-
merous anthropogenic impacts over the last half
century including urban and agricultural runoff,
shell dredging, overfishing, artificial saltwater and
freshwater inputs, shoreline alteration, and indus-
trial discharges (Francis and Poirrier 1999; Pen-
land et al. 2002). Although some of these environ-
mental stressors (urban and agricultural runoff, ar-
tificial saltwater and freshwater inputs) exist pres-
ently within the estuary while others (shell
dredging) have been discontinued, the environ-
mental degradation of Lake Pontchartrain has in-
creased over time (Penland et al. 2002). Between
1900 and 1980, fisheries production in Lake Pont-
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Fig. 1. Location map of the Lake Pontchartrain estuary,
Louisiana, U.S. Sources of artificial disturbances shown are the
Bonnet Carre Spillway (BCS), the City of New Orleans, and the
Mississippi River Gulf Outlet (MR-GO).

chartrain declined by 49% (Stone 1980). Without
substantial conservation efforts, environmental
degradation will continue as the local human pop-
ulation increases, further straining natural resourc-
es (Beall and Peters 2002). If important Lake Pont-
chartrain fish assemblages are to be protected
from increasing environmental threats and re-
stored to past functional levels, it is essential to un-
derstand their long-term stability. When assem-
blage stability can be assessed over long time pe-
riods (e.g., 50 yrs), the relative influence of natural
versus anthropogenic effects on the assemblages
can be better discriminated (Nordstrom and Ro-
man 1996; Araujo et al. 1998; Marshall and Elliott
1998; Power et al. 2002).

To assess fish assemblage changes in Lake Pont-
chartrain, we used canonical correspondence anal-
ysis (CCA), a multivariate method that elucidates
the relationships between biological assemblages
of species and their environment. Synthetic envi-
ronmental gradients are extracted from the eco-
logical data and are used to develop an ordination
diagram whereby relationships between species,
environmental variables, and sampling sites can be
compared over time (ter Braak and Verdonschot
1995). Our goal was to compare fish assemblage
stability in demersal, nearshore, and pelagic habi-
tat types. We define a stable fish assemblage as one
that may vary over time in response to environ-
mental fluctuations, but returns to a consistent spe-
cies composition (exhibits cyclicity). An unstable
assemblage will show directional, linear change in
species composition over time. By using large tem-
poral and spatial scales we hoped to discriminate
whether long-term trends reflected responses to
natural fluctuations in environmental conditions
or suggested noncyclic assemblage changes (a sign
of habitat degradation). We addressed two ques-
tions: over fifty years, did fish assemblages in Lake
Pontchartrain change, and did the dominant fish
species in these assemblages respond differently
over time based on ecological differences (benthic
feeders versus planktivores, resident species versus
transient species)?

Materials and Methods

STUDY LOCATION

Lake Pontchartrain has a surface area of 1,630
km2 and a mean depth of 3.7 m (Sikora and Kje-
rfve 1985). To assess possible fish assemblage
changes within Lake Pontchartrain, we divided the
estuary into five regions of approximately equal
area (Fig. 1). Each region exhibits a discernable
combination of natural and anthropogenic influ-
ences. The northwest region has the highest nat-
ural freshwater input (mostly from Lake Maurepas

to the west and the Tangipahoa River to the north)
and the least modified hydrology. Increases of ur-
banization and agricultural runoff from dairy
farms have recently begun to affect this region
(Penland et al. 2002). In the southwest region, the
largest environmental influence is the Bonnet
Carre Spillway (BCS). This structure was built in
1931 as a means of flood control and forms an
artificial connection between the Mississippi River
and Lake Pontchartrain (Sikora and Kjerfve 1985).
During periods of exceptionally high discharge in
the Mississippi River (1937, 1945, 1950, 1973, 1975,
1979, 1983, and 1997) fresh water is diverted from
the river, through the BCS, and into southwestern
Lake Pontchartrain. Other factors that impact this
region are industrial discharge from oil refineries
and urban runoff from canals draining New Or-
leans. The northeast region has the majority of
submersed aquatic vegetation in Lake Pontchar-
train. Like the northwest region, this area receives
natural freshwater input from rivers, but exhibits
more degradation from agricultural and urban
runoff. Southeastern Lake Pontchartrain is the
area of the estuary that is most impacted by an-
thropogenic influences. An extensive artificial
shoreline (concrete sea wall, riprap) and high ur-
ban runoff are the characteristics that best de-
scribe this region. The influence of greatest mag-
nitude on this region is the artificial connection
between Lake Pontchartrain and the Gulf of Mex-
ico created by the construction of the Mississippi
River-Gulf Outlet (MR-GO), a deep-water canal
completed in 1963 (Sikora and Kjerfve 1985).
Through its connections with the Inner Harbor
Navigation Canal and the Intracoastal Waterway,
the MR-GO has allowed unnaturally high salinity
water to enter this region of the estuary (Poirrier



Changes in Estuarine Fish Assemblages 809

TABLE 1. Number of samples collected by each gear type
(trawl, beach seine, and gill net) for the four sampling periods
(1954, 1978, 1996–1998, and 1998–2000). Within sampling pe-
riods, the number of samples collected from each of the five
regions of Lake Pontchartrain is reported (e.g., NW refers to
the northwestern region, etc.). No data denotes incidents when
a lack of sampling consistency with other survey periods pre-
cluded analyses.

Sampling
Period Region

Trawl
Samples

Beach
Seine

Samples
Gill Net
Samples

1954 EE
NE
SE
NW
SW

46
6

31
16
29

27
9

15
15
14

No data
No data
No data
No data
No data

1978 EE
NE
SE
NW
SW

22
24
25
42
24

5
19
12
14
11

9
15
12
14
12

1996–1998 EE
NE
SE
NW
SW

16
10
19
12
15

15
11
20
6
6

2
3

No data
No data
1

1998–2000 EE
NE
SE
NW
SW

9
11
14
7

18

15
16
12
10
8

4
5
3
4
4

1978). Lake Pontchartrain’s natural connection to
marine waters occurs in the eastern-most region.
This region receives saltwater input from Lake
Borgne to the east and is consistently the region
of highest salinity in Lake Pontchartrain. Based on
locality information, each fish collection was as-
signed to one of these five regions for analyses.

DATA COLLECTION

Using original field notes and museum records,
we compiled fish survey data from four time peri-
ods: 1954, 1978, October 1996–September 1998,
and October 1998–October 2000. To address pos-
sible meteorological differences among sampling
periods, we examined rainfall and discharge re-
cords to determine if fishes were collected during
a typically dry or wet period. The 1954 and 1978
surveys were conducted monthly throughout the
year, with collections being made at both estab-
lished and arbitrary sampling sites throughout the
lake (Suttkus et al. 1954; Thompson and Fitzhugh
1985). Based on meteorological data, 1954 was a
moderately dry year for southeastern Louisiana
whereas the area experienced high amounts of
rainfall in 1978 (Sikora and Kjerfve 1985). October
1996 through September 1998 was a wet period for
Lake Pontchartrain. The fish survey conducted
during this 2-yr period consisted of quarterly sam-
ples taken at established sites throughout the Lake.
A March 1997 opening of the BCS filled Lake
Pontchartrain with Mississippi River water and the
Lake was entirely fresh for 2–3 wk (Haralampides
and McCorquodale 2002; Dufrechou and Poirrier
personal observations). The fourth sampling peri-
od (October 1998–October 2000) was immediately
subsequent to the third sampling period and be-
gan after Hurricane Georges passed through
southeastern Louisiana on September 29, 1998.
During the next 2 yr of sampling the Lake Pont-
chartrain region experienced its driest period on
record, with annual rainfall for both 1999 (115.24
cm) and 2000 (96.90 cm) measuring more than 70
cm below the long-term average of 188.98 cm (Na-
tional Weather Service 2001). Sampling during this
period was quarterly at established sites through-
out the lake, until June 2000 when monthly sam-
pling was initiated.

Catch abundance data from three gear types
(trawls, beach seines, and gill nets) were compared
among the sampling periods (Table 1). Collection
data from original field notes were used to exclude
samples that proved to be inconsistent with the ma-
jority of collections (e.g., extremes of sampling
time and effort) or that did not include data for
water temperature (�C), salinity (‰), and Secchi
depth (m). Among the sampling periods, three
possible trawl sizes (4.88, 6.71, or 10.68 m with 19.1

mm mesh) were fished for three possible durations
(10, 15, or 30 min). Beach seining for all sampling
periods involved the use of both small (3.05–4.58
m) and large (15.25–106.75 m) seines (either sep-
arately or in combination) with mesh sizes of 4.3–
12.7 mm. All gill nets were 91.50 m in length, 3.05–
3.66 m deep, and fished for 1 to 6 h. The mesh
sizes (bar measurement) for each of four equal-
sized gill net panels were 25.4, 50.8, 76.2, and
101.6 mm. No gill net data from the 1954 survey
were used in analyses due to a lack of sampling
consistency with other survey periods.

DATA ANALYSES AND INTERPRETATION OF
CCA DIAGRAMS

Fish assemblage data and the corresponding en-
vironmental data were analyzed using CCA, a mul-
tivariate method used for comparing the relation-
ships among biological assemblages of species and
their environment (ter Braak and Verdonschot
1995; Penczak et al. 2002). For all analyses, the
CANOCO software package (Version 4) was used
(ter Braak and Verdonschot 1995). Although CCA
has been widely used in analyses of fish assemblag-
es (Copp 1992; Winemiller and Leslie 1992; Taylor
et al. 1993; Rodriguez and Lewis 1997; Fairchild et
al. 1998) a simplified explanation of how CCA di-
agrams are interpreted is necessary. A CCA ordi-
nation diagram optimally displays how assemblage
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composition varies with environmental conditions
by combining data for sample collections, species,
and environmental variables into a single two-di-
mensional illustration (ter Braak and Smilauer
1998). The two ordination axes (CCA Axis I and
II) in each diagram represent linear combinations
of the environmental variables. These two orthog-
onal axes are constructed such that they explain
the highest variation in the environmental data,
with Axis I explaining more than Axis II. In the
resulting diagram, three elements are used to de-
scribe relationships among the data: sample points,
species points, and environmental vectors. The po-
sition of a sample point in the diagram is deter-
mined by both the composition of the species col-
lection (i.e., the number of each species collected
in the sample) and the environmental conditions
at the time of sampling. If two samples differ in
either species composition or environmental con-
ditions they will appear separate in the ordination
diagram; similar sampling sites will appear closer
together. A species point will occur at a central po-
sition, or centroid, among those sample points in
which it was collected. Sample points around a spe-
cies point will contain more of that species than
sample points located elsewhere in the diagram.
Environmental vectors (represented by arrows in
the diagrams) show the direction of change along
a gradient for each environmental variable. The
direction also shows how closely each variable is
correlated to either CCA Axes I or II. Environ-
mental conditions of a given sample or species can
be interpreted from where its point occurs relative
to a specific vector (i.e., arrow); points located to-
ward the ends of a vector are associated with ex-
treme values of the environmental variable. The
relative strength of each environmental vector is
represented by the length of the arrow. By com-
bining all three elements into one diagram, CCA
allows direct interpretation of how environmental
variables affect the species composition of multiple
samples and can be used to compare assemblage
compositions among samples.

To assess possible differences in Lake Pontchar-
train fish assemblages among the four sampling pe-
riods, centroids representing the assemblages of
each of the five regions were used to construct five-
sided polygons, each representing a sampling pe-
riod. That is, each corner of a five-sided polygon
represents the average environmental and species
composition for that region and sampling period.
Polygons were created by connecting a centroid to
its two closest neighbor centroids (from the same
sampling period) with a line. Because centroids
that are close in ordinal space represent fish assem-
blages that are similar to each other, polygons that
overlap represent periods in Lake Pontchartrain

when the fish assemblages and environmental con-
ditions were similar. We developed and compared
CCA ordination diagrams for each of the gear
types to assess changes in assemblages over time
for demersal (represented by trawl data), near-
shore (beach seine data), and pelagic habitats (gill
net data). Included in these three diagrams are
centroids (i.e., species points) that represent the
five numerically dominant species for each gear
type. The purpose of analyzing the position of
these centroids in ordinate space was to determine
if the role of these fish species in assemblages
changed over time. This method can also establish
how fishes with different ecological characteristics
responded to increasing habitat degradation over
time.

For each data set the following analytical options
in CANOCO were used: direct gradient analysis
(extracted patterns from the explained variation
only), diagrams optimized intersample distances,
all catch abundance data were square-root trans-
formed, and rare species were down-weighted to
adjust for possible sampling biases (ter Braak and
Verdonschot 1995). Square-root transformation of
abundance data was used to standardize data
among samples and account for possible differenc-
es in sampling durations. Down-weighting of rare
species was based on their frequency relative to the
most common species. If a species’ frequency was
less than 1⁄5 that of the most common species, then
it was down-weighted in proportion to its frequen-
cy. For each gear type, permutation tests were run
to determine the statistical significance of the re-
lationship between species composition and envi-
ronmental data along the first ordination axis. If
the relationship was nonrandom, then further per-
mutations tested the significance of each environ-
mental variable in describing variation in the over-
all data.

Results
During the four sampling periods, 366,358 fishes

were collected representing 97 species (Table 2).
Total numbers of individuals collected by gear type
were 246,863 for trawls, 117,307 for beach seines,
and 2,188 for gill nets. Significant eigenvalues for
CCA Axis I (Table 3) and a lack of polygon overlap
in the ordination diagrams (Figs. 2–4) showed that
fish assemblages in all three habitat types changed
over time. Assemblage separation in ordinate space
was the greatest in trawl samples (highest eigen-
values, Table 3) with none of the polygons repre-
senting fish assemblages overlapping in the CCA
diagram (Fig. 2). Although salinity (p � 0.005),
water temperature (p � 0.005), and Secchi depth
(p � 0.020) were significantly related to the overall
fish compositions, most separation of assemblages
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TABLE 2. Most common fishes collected by trawls (T), beach seines (S), and gill nets (G) from Lake Pontchartrain during four
sampling periods (1954, 1978, 1996–1998, and 1998–2000). Fishes representing less than 1% of the total catch are not shown (84
species). Letters in sampling period columns represent the gear used to collect a species during that sampling period. A list of all
species collected can be requested from the first author at moconnel@uno.edu.

Species Number %

Occurrence in Gear Types by Sampling Period

1954 1978 96–98 98–�00

Bay anchovy (Anchoa mitchilli)
Gulf menhaden (Brevoortia patronus)
Atlantic croaker (Micropogonias undulatus)
Inland silverside (Menidia beryllina)
Sheepshead minnow (Cyprinodon variegatus)

221,004
37,900
37,421
22,506
8,302

60
10
10
6
2

T, S
T, S, G
T, S
S
S

T, S
T, S, G
T, S, G
T, S
S

T, S
T, S, G
T, S, G
T, S
S

T, S
T, S, G
T, S, G
S
S

Hardhead catfish (Arius felis)
Rainwater killifish (Lucania parva)
Spot (Leiostomus xanthurus)
Gulf pipefish (Syngnathus scovelli)
Striped mullet (Mugil cephalus)

5,120
5,108
4,437
3,017
2,618

1
1
1
1
1

T, S
S
T, S
T, S
T, S

T, S, G
S
T, S, G
T, S
T, S, G

T, G
S
T, S, G
T, S
T, S

S, G
S
S, G
T, S
T, S, G

Silver perch (Bairdiella chrysoura)
Sand seatrout (Cynoscion arenarius)
Hogchoker (Trinectes maculatus)

2,121
2,032
1,972

1
1
1

T, S
T, S
T, S

S
T, S, G
T, S, G

S
T, S, G
T, S

T, S, G
T, S, G
S, G

TABLE 3. Results from canonical correspondence analyses (CCA) of fish assemblages collected by three gear types over four sampling
periods (1954, 1978, 1996–1998, and 1998–2000) from five regions of the Lake Pontchartrain estuary in southeastern Louisiana.
Eigenvalues measure the separation of assemblages and species along ordination axes with eigenvalues � 0.3 indicating strong gra-
dients. Probabilities for the first ordination axes are based on 1,000 permutations. The species-environment correlation represents
the correlation between sample scores that are derived from the species scores and sample scores that are linear combinations of the
environmental variables. These values are measures of how well the predicted sample scores (based on species scores) correlate with
actual sample scores (based on actual environmental scores). For each environmental variable, numbers are correlations with the
respective ordination axis.

Trawl

Axis I Axis II

Beach Seine

Axis I Axis II

Gill Net

Axis I Axis II

Eigenvalue
(probability)

Species-environment
correlation

0.311
(0.005)

0.817

0.099

0.701

0.305
(0.005)

0.796

0.153

0.652

0.301
(0.02)

0.804

0.180

0.761
Salinity
Water temperature
Secchi depth

�0.100
0.022
0.186

�0.348
�0.470
�0.430

0.002
0.050
0.137

�0.392
�0.117
�0.282

0.377
0.785
0.439

0.659
�0.163

0.330

for demersal fishes appeared along a temporal gra-
dient associated with CCA Axis I (i.e., 1954 to
2000). A similar pattern was seen in the CCA or-
dination diagram representing beach seine sam-
ples with salinity (p � 0.005), water temperature
(p � 0.005), and Secchi depth (p � 0.010) being
significantly related to overall fish compositions,
though most separation among polygons appeared
along CCA Axis I (Fig. 3). Unlike the trawl sam-
ples, the polygons representing the 1978 and
1996–1998 periods (both wet periods) overlapped,
indicating a lack of assemblage change between
these sampling periods. None of the polygons rep-
resenting sampling periods for gill net samples
overlapped, with salinity (p � 0.015) and water
temperature (p � 0.005) being significantly relat-
ed to overall fish compositions; Secchi depth (p �
0.750) was not significantly related to overall fish
assemblage compositions (Fig. 4). In contrast to
trawl and seine samples, changes in assemblages
among sampling periods for gill net samples were

more associated with changes in salinity than a
temporal gradient, although gill net data for 1954
were not available for these analyses.

The five numerically dominant species for each
gear type were denoted by centroids in each of the
CCA diagrams with a total of nine species being
represented (Figs. 2–4). In trawl samples, the bay
anchovy (Anchoa mitchilli) was the most common
species (81% of total trawl catch over all sampling
periods) with a centroid that was the most closely
associated with the 1996–1998 and 1998–2000 sam-
pling periods (Fig. 2). The centroid for trawl-col-
lected Atlantic croaker (Micropogonias undulates;
12%) was within the polygon representing the
1978 sampling period. The Gulf menhaden (Bre-
voortia patronus; 1.6%) centroid was the most cen-
trally located in the trawl CCA diagram, while the
centroids for hardhead catfish (Arius felis; 1.3%)
and spot (Leiostomus xanthurus; 0.9%) were associ-
ated with both increased salinity and the 1954 and
1978 sampling periods. The CCA diagram for
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Fig. 2. Site-conditional biplot based on a canonical corre-
spondence analysis (CCA) of data representing fish species col-
lected by trawl sampling from Lake Pontchartrain, Louisiana,
during four sampling periods (1954, 1978, 1996–1998, and
1998–2000). Centroids representing the five numerically domi-
nant species of total trawl catch are shown as black circles with
labels as follows: A.m. � Anchoa mitchilli, M.u. � Micropogonias
undulatus, B.p. � Brevoortia patronus, L.x. � Leiostomus xanthurus,
and A.f. � Arius felis.

Fig. 3. Site-conditional biplot based on a canonical corre-
spondence analysis (CCA) of data representing fish species col-
lected by beach seine sampling from Lake Pontchartrain, Lou-
isiana, during four sampling periods (1954, 1978, 1996–1998,
and 1998–2000). Centroids representing the five numerically
dominant species of total beach seine catch are shown as black
circles with labels as follows: A.m. � Anchoa mitchilli, M.u. �
Micropogonias undulatus, B.p. � Brevoortia patronus, C.v. � Cypri-
nodon variegatus, and M.b. � Menidia beryllina.

Fig. 4. Site-conditional biplot based on a canonical corre-
spondence analysis (CCA) of data representing fish species col-
lected by gill net sampling from Lake Pontchartrain, Louisiana,
during four sampling periods (1954, 1978, 1996–1998, and
1998–2000). Centroids representing the five numerically domi-
nant species of total gill net catch are shown as black circles
with labels as follows: B.p. � Brevoortia patronus, L.x. � Leiostomus
xanthurus, A.f. � Arius felis, A.c. � Alosa chrysochloris, and D.c. �
Dorosoma cepedianum.

beach seine samples includes a B. patronus (28.3%
of total beach seine catch over all sampling peri-
ods) centroid that is between the 1954 sampling
period and the remaining three sampling periods
(Fig. 3). Centroids representing A. mitchilli
(17.5%) and two resident species, inland silverside
(Menidia beryllina; 19.1%) and sheepshead minnow
(Cyprinodon variegatus; 7.1%), are clumped and
centrally located in the beach seine CCA diagram.
The fifth most common species collected by beach
seines, M. undulatus (5.7%), was represented by a
centroid within the polygon representing the 1954
sampling period. In gill net samples, B. patronus
(38.2% of total gill net catch over all sampling pe-
riods) was the most common species with a cen-
trally located centroid (Fig. 4). The centroid for
skipjack herring (Alosa chrysochloris; 7.9%) was also
centrally located, while centroids for A. felis
(11.3%) and L. xanthurus (6.9%) were associated
with increased water temperature and the 1978
sampling period. Gizzard shad (Dorosoma cepedian-
um; 5.6%), a freshwater species, had the centroid
most associated with the 1978 sampling period.

Discussion
Over the last half century, fish assemblages in

Lake Pontchartrain have not remained stable. The
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lack of overlap among sampling period polygons
in the CCA diagrams denotes definitive fish assem-
blage change over time in all three habitat types
sampled. This type of fish assemblage instability in
estuaries is normally associated with severe habitat
degradation (Araujo et al. 2000; Peterson et al.
2000; Clarke and Warwick 2001; Matern et al.
2002). For undisturbed or minimally disturbed
habitat types, fish assemblages are relatively stable
and any slight variations in species composition
tend to reflect changes in local environmental con-
ditions (Wagner 1999; Gido and Matthews 2000;
Able et al. 2001). Although our analyses included
no attempts to quantify or directly link 50 yr of
multiple anthropogenic impacts to assemblage in-
stability, the CCA results allowed for the logical in-
terpretation of available ecological and environ-
mental data to identify those fishes and habitat
types that have changed the most over time. This
approach allowed us to address our questions
about fish assemblage change without incorporat-
ing intractable and likely subjective data regarding
multiple causes of habitat degradation in Lake
Pontchartrain.

Fish assemblages changed the most in demersal
habitat types. Although some variation among sam-
pling periods was associated with gradients of salin-
ity, temperature, and Secchi depth (as would be
expected in less disturbed estuaries), it is clear that
fish assemblages collected by trawls have changed
since 1954 and that the change is not in response
to natural environmental fluctuations (e.g., differ-
ences between wet or dry periods). The lack of
cyclicity in the trawl CCA diagram (Fig. 2, espe-
cially from the 1954 through the 1996–1998 sam-
pling periods) further emphasizes the greater de-
gree of change over time in these assemblages in
comparison to those fishes collected by beach
seines and gill nets (Matthews 1998). The unidi-
rectional shift in demersal assemblages over time
(left to right in the trawl CCA diagram) is typical
of aquatic assemblages that have experienced per-
sistent habitat degradation (Clarke and Warwick
2001). Because demersal fishes are more directly
reliant on habitat condition than fishes that re-
main mostly in the water column ( Jones et al.
1999), the stronger response shown by trawl data
versus beach seine and gill net data is further evi-
dence that demersal fish assemblage change in
Lake Pontchartrain is related to anthropogenic im-
pacts.

The CCA diagram for beach seine collections
also showed assemblage change along CCA Axis I
with little association with the environmental vari-
ables, but the pattern of change was less severely
unidirectional. The fish assemblages collected in
1954 were separated from the remaining sampling

periods along CCA Axis I, but the assemblages col-
lected during the two wet periods (1978 and 1996–
1998) overlapped in ordinate space. This shows
that these assemblages were similar although the
collections were made 18–20 yr apart. The relative
stability of nearshore fish assemblages in compar-
ison to demersal assemblages may be due to the
high proportion (36% of total catch) of tolerant
resident fishes that were collected by beach seines.
In comparison with estuarine dependent fishes,
these resident fish species (e.g., members of the
families Cyprinodontidae and Fundulidae) can
withstand environmental extremes and are less
likely to be affected by habitat degradation (Peter-
son and Ross 1991; Crego and Peterson 1997; Ar-
aujo et al. 2000). A similar pattern of assemblage
stability in resident fishes was noted during wet pe-
riods in the highly degraded San Francisco estuary
(Matern et al. 2002). The separation of the 1954
sampling period from the other periods represents
a change in nearshore fish assemblages that was
not associated with fluctuations in the three mea-
sured environmental variables. In Fig. 3, the vec-
tors representing change in water temperature, sa-
linity, and Secchi depth are oriented vertically in
the diagram while the change from the 1954 sam-
pling period to the other periods is along a hori-
zontal gradient (CCA Axis I).

Unlike demersal and nearshore assemblages,
changes in pelagic fish assemblages were highly as-
sociated with the salinity gradient. This is more typ-
ical of healthy estuaries where fish assemblages re-
spond closely to environmental change with cycli-
cal seasonal fluctuations (Wagner 1999; Able et al.
2001; Matern et al. 2002). The separation between
the 1978 period (wet) and the 1998–2000 period
(dry) is clearly along the axis representing salinity
(Fig. 4). This pattern likely represents the com-
mon occurrence of freshwater transients in estu-
aries during periods of low salinity and the move-
ment of marine transients into these areas during
high salinity (Darnell 1962; Peterson and Ross
1991; Wagner 1999; Able et al. 2001; Matern et al.
2002). Secchi depth, a measure of water clarity, was
not significantly related to overall pelagic fish as-
semblage compositions, whereas it was important
for demersal and nearshore assemblages. This re-
sult may reflect a difference in gear avoidance be-
tween active (trawls and beach seines) and passive
(gill nets) gear types. While a nearly invisible
monofilament gill net may remain undetected by
fishes across a wide range of water clarity and light
conditions, detecting and avoiding an oncoming
trawl or beach seine would be more highly depen-
dent on underwater visibility (Schieble et al. 2002).

Instability in the demersal and nearshore fish as-
semblages was further supported by significant
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changes over time in the two dominant member
species, M. undulatus and A. mitchilli. Centroids for
M. undulatus in the trawl and beach seine CCA di-
agrams showed that this species was a principal as-
semblage member in 1954 and 1978, but played a
reduced role in assemblage composition in 1996–
1998 and 1998–2000. The position of the A. mitch-
illi centroid in the trawl CCA diagram exhibited an
opposite trend, with this species dominating the
assemblages in the later two sampling periods.
These results are supported by the fact that be-
tween 1954 and 1998–2000 the percent composi-
tion of A. mitchilli in trawl collections increased sig-
nificantly (Wilcoxon Rank Sums, p � 0.0001) while
the percent composition of M. undulatus decreased
significantly (Wilcoxon Rank Sums, p � 0.0001;
O’Connell unpublished data). Further evidence of
a significant decrease in M. undulatus in the estu-
ary was seen in nearby Lake Maurepas, which is
connected to Lake Pontchartrain to the west via a
natural pass. Hastings (2002) found that although
A. mitchilli and M. undulatus were the two domi-
nant species in Lake Maurepas, there was a signif-
icant decrease in M. undulatus between 1983–1984
and 2000. While this type of large interannual
change in population size is a natural phenome-
non for many estuarine species (Able and Fahay
1998; Matern et al. 2002), the degree and trend of
the A. mitchilli-M. undulatus shift in both lakes sug-
gest something beyond natural variation. One pos-
sibility is that these species responded differently
to the long-term alteration of mid lake demersal
habitat by widespread shell-dredging between 1933
and 1990 (Francis and Poirrier 1998). Such large-
scale destruction of demersal habitat types would
likely affect populations of benthic fishes like M.
undulatus more than pelagic planktivorous fishes
such as A. mitchilli. It should be recognized that
Lake Pontchartrain is an open system and that
many other anthropogenic influences that have oc-
curred outside of the estuary (e.g., increased mor-
tality of M. undulatus due to shrimp trawl bycatch)
may have played a role in these assemblage chang-
es (Diamond et al. 2000). It should also be noted
that the dominance of A. mitchilli in trawl collec-
tions of more recent sampling periods does not
necessarily mean this species has increased in
abundance in Lake Pontchartrain since 1954. In
other estuaries, numbers of A. mitchilli have de-
clined in recent years (Cowan personal communi-
cation) and their present relative dominance of
the assemblage may just reflect a more drastic de-
crease of other local estuarine fish species.

Other species represented by centroids in the
CCA diagrams exhibited either consistent mem-
bership in assemblages over time (i.e., centrally lo-
cated centroids), a slight association with particular

sampling periods, or some degree of change that
was correlated to the measured environmental var-
iables. The estuarine dependent B. patronus was
the only species to occur in the top five species in
all three gear types. Unlike the centroids for A.
mitchilli and M. undulatus, the B. patronus centroids
are generally equidistant from the polygons rep-
resenting the different sampling periods that sug-
gests that this species’ representation in these as-
semblages has changed little over time. An analysis
of the percent composition of B. patronus in trawl
catches over time supports this assumption
(O’Connell unpublished data). State-wide fisheries
data suggest that numbers of this abundant estua-
rine-dependent species had not decreased between
1972 and 1992 (Chesney et al. 2000). The centroid
position for the pelagic A. chrysochloris in the gill
net CCA diagram reflects a similar lack of change
over time. The only two resident species with cen-
troids in the seine CCA diagram, M. beryllina and
C. variegatus, showed a slight association with the
environmental variables: the position of their cen-
troids is in the same general direction away from
the center of the CCA diagram as the three envi-
ronmental variables (ter Braak and Verdonschot
1995). A similar relationship with the environmen-
tal variables is seen for two demersal species, A. felis
and L. xanthurus. These species have centroids as-
sociated with each other in both the trawl and gill
net CCA diagrams. It is also interesting that these
two demersal species, like M. undulatus, are more
associated with the earlier sampling periods for
each of these gear types. This is further evidence
that demersal habitat types have been degraded
the most over the last half century. The centroid
for the freshwater species D. cepedianum is most as-
sociated with the polygon representing gill net col-
lections for the 1978 sampling period. This reflects
a logical conclusion that a freshwater species would
be more likely to occur in Lake Pontchartrain dur-
ing wetter periods of reduced salinity.

For most of these species (i.e., B. patronus, A.
chrysochloris, M. beryllina, C. variegatus, and D. cepe-
dianum) it appears that environmental conditions
more likely determined their representation in as-
semblages rather than factors associated with a
temporal gradient (i.e., differences among sam-
pling periods). For A. felis and L. xanthurus, their
association with the earlier sampling periods may
be similar to the pattern of declining importance
seen with M. undulatus over time in Lake Pont-
chartrain. Unlike these benthic species, freshwater
species (A. chrysochloris and D. cepedianum) and
nearshore resident species (M. beryllina and C. var-
iegatus) rarely occur in mid lake demersal habitat
types. Mid lake habitat degradation by shell-dredg-
ing would have had less of an effect on these spe-
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cies compared to the impact on those species that
use open water habitat types. Resident fishes of es-
tuaries are generally more tolerant to environmen-
tal variability than estuarine dependent fishes such
as A. felis, L. xanthurus, and M. undulatus (Hackney
and de la Cruz 1981; Peterson and Ross 1991; Cre-
go and Peterson 1997; Araujo et al. 2000).

The trawl and beach seine CCA showed that gra-
dients for salinity, Secchi depth, and temperature
were not strongly related to the major patterns of
fish assemblage change over time. Although these
environmental variables significantly affected the
composition of assemblages in Lake Pontchartrain
(see results of CCAs) and other estuaries (Marshall
and Elliott 1998; Wagner 1999; Araujo et al. 2000;
Matern et al. 2002; Power et al. 2002), their role
in determining fish assemblages is minor relative
to the temporal gradient associated with CCA Axis
I. The explicit evidence of this is that for these two
gear types none of the environmental gradients are
highly correlated with CCA Axis I (arrows in dia-
gram more vertically oriented than horizontal).
This is the axis that explains most of the variation
in the data and the sampling periods are clearly
separated along it. If we make the assumption that
this temporal gradient represents increasing envi-
ronmental degradation of Lake Pontchartrain over
time (Penland et al. 2002), then the scenario
matches that of other estuaries. For example, in
two relatively healthy estuaries of the east coast of
the United States, fish assemblages that appeared
stable over 16-yr (Wagner 1999) and 25-yr (Able et
al. 2001) periods were clearly discriminated along
a salinity gradient. More simply, the differences
among assemblages were easily explained by the
salinity tolerances of the fish species each con-
tained. Studies in more disturbed estuaries show
the reduced influence of environmental variables
on fish assemblages (as is seen in the present
study). Salinity was not correlated with the occur-
rence of major species in an oligohaline marsh
characterized as being part of a system that was
composed of abandoned rice fields crisscrossed by
numerous canals and ditches (Rozas and Hackney
1984). In a large estuarine system severely impact-
ed by introduced species and hydrologic alter-
ations, the relationship between environmental
variables and the composition of the fish assem-
blage was considered correlative, but not causative
(Matern et al. 2002). Two separate estuarine stud-
ies also showed that degraded habitat types played
a larger role in determining local species richness
than changes in environmental variables (Able et
al. 1998; Peterson et al. 2000). These results do not
signify a total lack of influence by these three fac-
tors. The CCA revealed that the three environmen-
tal variables were significantly (p � 0.05) associat-

ed with the distribution and abundance patterns
of fish assemblage (with the exception of Secchi
depth for gill net samples, p � 0.750). This re-
sponse by fishes to natural fluctuations occurs in
other estuaries (Hastings et al. 1987; Wagner 1999;
Matern et al. 2002) and is likely to become more
prevalent in degraded systems when anthropogen-
ic factors are reduced (Araujo et al. 2000; Matern
et al. 2002).

Lake Pontchartrain fish assemblages have
changed over the last half century. Fish assemblag-
es occurring in demersal habitat types showed the
most change over time. Changes in fish assemblag-
es from nearshore and pelagic habitat types were
more closely related to changes in environmental
conditions, though change along an inferred tem-
poral gradient was also evident. Examination of the
dominant fish species in these habitat types re-
vealed that these assemblage changes were associ-
ated with a decrease in the occurrence of M. un-
dulatus (a demersal species) over time and an in-
crease in A. mitchilli (a planktivorous species). This
pattern was observed in both trawl and beach seine
data and could not have been detected without the
use of data that spanned large spatial and temporal
scales (Poff and Allan 1995). Analysis of long-term
data can allow the discrimination of natural effects
from other, possibly anthropogenic, effects in com-
plex and highly variable estuarine systems (Nords-
trom and Roman 1996; Araujo et al. 1998; Marshall
and Elliott 1998; Power et al. 2002). As with other
degraded estuaries (Matern et al. 2002), it is un-
likely that fish assemblages in Lake Pontchartrain
will stabilize until more natural processes return
and the effects of human disturbance seriously re-
duced.
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