74 research outputs found

    Context-Dependent Transformation of Adult Pancreatic Cells by Oncogenic K-Ras

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies. To investigate the cellular origin(s) of this cancer, we determined the effect of PDAC-relevant gene mutations in distinct cell types of the adult pancreas. We show that a subpopulation of Pdx1-expressing cells is susceptible to oncogenic K-Ras-induced transformation without tissue injury, whereas insulin-expressing endocrine cells are completely refractory to transformation under these conditions. However, chronic pancreatic injury can alter their endocrine fate and allow them to serve as the cell of origin for exocrine neoplasia. These results suggest that one mechanism by which inflammation and/or tissue damage can promote neoplasia is by altering the fate of differentiated cells that are normally refractory to oncogenic stimulation.National Cancer Institute (U.S.) (Cancer Center Support (Core) Grant, P30 CA14051)National Institutes of Health (U.S.) (grant 1 PO1 CA117969 01)American Cancer Society (ACS Research Professor)Anna Fuller FundMassachusetts Institute of Technology (Daniel K. Ludwig Foundation Cancer Research Professor)Howard Hughes Medical Institute (Investigator

    Genetic Deletion of the Desmosomal Component Desmoplakin Promotes Tumor Microinvasion in a Mouse Model of Pancreatic Neuroendocrine Carcinogenesis

    Get PDF
    We used the RIP1-Tag2 (RT2) mouse model of islet cell carcinogenesis to profile the transcriptome of pancreatic neuroendocrine tumors (PNET) that were either non-invasive or highly invasive, seeking to identify pro- and anti-invasive molecules. Expression of multiple components of desmosomes, structures that help maintain cellular adhesion, was significantly reduced in invasive carcinomas. Genetic deletion of one of these desmosomal components, desmoplakin, resulted in increased local tumor invasion without affecting tumor growth parameters in RT2 PNETs. Expression of cadherin 1, a component of the adherens junction adhesion complex, was maintained in these tumors despite the genetic deletion of desmoplakin. Our results demonstrate that loss of desmoplakin expression and resultant disruption of desmosomal adhesion can promote increased local tumor invasion independent of adherens junction status

    Mouse Models of Cancer

    No full text

    Mouse Models of Cancer

    No full text
    • …
    corecore