1,763 research outputs found

    Is string theory a theory of quantum gravity?

    Full text link
    Some problems in finding a complete quantum theory incorporating gravity are discussed. One is that of giving a consistent unitary description of high-energy scattering. Another is that of giving a consistent quantum description of cosmology, with appropriate observables. While string theory addresses some problems of quantum gravity, its ability to resolve these remains unclear. Answers may require new mechanisms and constructs, whether within string theory, or in another framework.Comment: Invited contribution for "Forty Years of String Theory: Reflecting on the Foundations," a special issue of Found. Phys., ed. by G 't Hooft, E. Verlinde, D. Dieks, S. de Haro. 32 pages, 5 figs., harvmac. v2: final version to appear in journal (small revisions

    System development of the Screwworm Eradication Data System (SEDS) algorithm

    Get PDF
    The use of remotely sensed data is reported in the eradication of the screwworm and in the study of the role of the weather in the activity and development of the screwworm fly. As a result, the Screwworm Eradication Data System (SEDS) algorithm was developed

    Precursors, black holes, and a locality bound

    Full text link
    We revisit the problem of precursors in the AdS/CFT correspondence. Identification of the precursors is expected to improve our understanding of the tension between holography and bulk locality and of the resolution of the black hole information paradox. Previous arguments that the precursors are large, undecorated Wilson loops are found to be flawed. We argue that the role of precursors should become evident when one saturates a certain locality bound. The spacetime uncertainty principle is a direct consequence of this bound.Comment: 26 pages, 8 figs; reference added, minor clarification in sec. 2; incorrect draft mistakenly used in version

    Nonlocality vs. complementarity: a conservative approach to the information problem

    Full text link
    A proposal for resolution of the information paradox is that "nice slice" states, which have been viewed as providing a sharp argument for information loss, do not in fact do so as they do not give a fully accurate description of the quantum state of a black hole. This however leaves an information *problem*, which is to provide a consistent description of how information escapes when a black hole evaporates. While a rather extreme form of nonlocality has been advocated in the form of complementarity, this paper argues that is not necessary, and more modest nonlocality could solve the information problem. One possible distinguishing characteristic of scenarios is the information retention time. The question of whether such nonlocality implies acausality, and particularly inconsistency, is briefly addressed. The need for such nonlocality, and its apparent tension with our empirical observations of local quantum field theory, may be a critical missing piece in understanding the principles of quantum gravity.Comment: 11 pages of text and figures, + references. v2 minor text. v3 small revisions to match final journal versio

    High energy QCD scattering, the shape of gravity on an IR brane, and the Froissart bound

    Get PDF
    High-energy scattering in non-conformal gauge theories is investigated using the AdS/CFT dual string/gravity theory. It is argued that strong-gravity processes, such as black hole formation, play an important role in the dual dynamics. Further information about this dynamics is found by performing a linearized analysis of gravity for a mass near an infrared brane; this gives the far field approximation to black hole or other strong-gravity effects, and in particular allows us to estimate their shape. From this shape, one can infer a total scattering cross-section that grows with center of mass energy as ln^2 E, saturating the Froissart bound.Comment: 27 pages, 1 fig, harvmac. v2: references added, typos corrected v3: typo correcte

    3D gravity and non-linear cosmology

    Full text link
    By the inclusion of an additional term, non-linear in the scalar curvature RR, it is tested if dark energy could rise as a geometrical effect in 3D gravitational formulations. We investigate a cosmological fluid obeying a non-polytropic equation of state (the van der Waals equation) that is used to construct the energy-momentum tensor of the sources, representing the hypothetical inflaton in gravitational interaction with a matter contribution. Following the evolution in time of the scale factor, its acceleration, and the energy densities of constituents it is possible to construct the description of an inflationary 3D universe, followed by a matter dominated era. For later times it is verified that, under certain conditions, the non-linear term in RR can generate the old 3D universe in accelerated expansion, where the ordinary matter is represented by the barotropic limit of the van der Waals constituent.Comment: 7 pages, to appear in Mod. Phys. Let

    Comments on information loss and remnants

    Full text link
    The information loss and remnant proposals for resolving the black hole information paradox are reconsidered. It is argued that in typical cases information loss implies energy loss, and thus can be thought of in terms of coupling to a spectrum of ``fictitious'' remnants. This suggests proposals for information loss that do not imply planckian energy fluctuations in the low energy world. However, if consistency of gravity prevents energy non-conservation, these remnants must then be considered to be real. In either case, the catastrophe corresponding to infinite pair production remains a potential problem. Using Reissner-Nordstrom black holes as a paradigm for a theory of remnants, it is argued that couplings in such a theory may give finite production despite an infinite spectrum. Evidence for this is found in analyzing the instanton for Schwinger production; fluctuations from the infinite number of states lead to a divergent stress tensor, spoiling the instanton calculation. Therefore naive arguements for infinite production fail.Comment: 30 pages (harvmac l mode) UCSBTH-93-35 (minor reference and typo corrections

    On Loops in Inflation II: IR Effects in Single Clock Inflation

    Get PDF
    In single clock models of inflation the coupling between modes of very different scales does not have any significant dynamical effect during inflation. It leads to interesting projection effects. Larger and smaller modes change the relation between the scale a mode of interest will appear in the post-inflationary universe and will also change the time of horizon crossing of that mode. We argue that there are no infrared projection effects in physical questions, that there are no effects from modes of longer wavelength than the one of interest. These potential effects cancel when computing fluctuations as a function of physically measurable scales. Modes on scales smaller than the one of interest change the mapping between horizon crossing time and scale. The correction to the mapping computed in the absence of fluctuations is enhanced by a factor N_e, the number of e-folds of inflation between horizon crossing and reheating. The new mapping is stochastic in nature but its variance is not enhanced by N_e.Comment: 13 pages, 1 figure; v2: JHEP published version, added minor comments and reference

    The information paradox and the locality bound

    Full text link
    Hawking's argument for information loss in black hole evaporation rests on the assumption of independent Hilbert spaces for the interior and exterior of a black hole. We argue that such independence cannot be established without incorporating strong gravitational effects that undermine locality and invalidate the use of quantum field theory in a semiclassical background geometry. These considerations should also play a role in a deeper understanding of horizon complementarity.Comment: 21 pages, harvmac; v2-3. minor corrections, references adde
    • …
    corecore