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1 Introduction

Loop corrections to inflationary correlators can have interesting infrared (IR) behaviors.

In perturbation theory, depending on the kind of interactions considered, it is possible to

find logarithmic running of the form log(H/µ) [1], where µ is the renormalization scale and

H is the Hubble scale and represents the natural low energy scale within the logarithmic

corrections. One also finds time-dependent corrections [2–4], corrections that grow with the

time of observation. And finally there are also corrections proportional to log(kL), where

k is the comoving wavenumber of the mode considered, while L is a comoving infrared

scale [5, 6]. The purpose of this paper is to address these last infrared terms in the context

of single clock models of inflation.

We will show that they fall into two classes. The first class of infrared divergencies re-

sults from asking an unphysical question and disappear after a redefinition of the observable

quantities. The second class has never been identified before, and they are actually physical,

in the sense that they lead to measurable effects. They are projection type effects caused by

modes that are shorter wavelength than the one of interest and change the mapping between

observed scale and time of horizon crossing. These new corrections we identify are enhanced

by a factor of Ne, the number of e-folds between the point in the inflationary history a mode

crosses the horizon and the end of inflation. Although this new mapping is stochastic, its

variance is small, not enhanced by Ne and can thus be thought as deterministic.

The effect we uncover is just the perturbative version of the same physics that leads to

slow-roll eternal inflation. We will first find an expression for the projection effect caused

by the short modes at lowest order in the amplitude of fluctuations. However this relation

to slow-roll eternal inflation will allow us to borrow from that literature and re-sum the

expressions to obtain a result valid even in cases where the product of the amplitude of

fluctuations times Ne is large.

This paper contains results presented in a talk at the Perimeter Institute in June 2010

which is available online at http://pirsa.org/10100079/. The results have already been
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cited in the literature (e.g. [7–9]). For clarity, additional results we obtained after that

talk can be found in our companion paper [10]. After our talk at the Perimeter Institute,

other papers on topics related to the ones treated here have appeared in the literature. For

example references [7–9, 11–15] discuss the effect on the power spectrum of modes longer

than the one observed. Reference [15] discusses some of these issues using the stochastic

approach to inflationary perturbations. Instead, references [8, 9] discuss the effect on the

power spectrum of modes shorter than the one observed. Since in this paper we discuss

only the results presented in the talk at the Perimeter Institute, we do not describe the

subsequent literature in further detail, but we refer the interested reader to read it directly.

2 Dynamical effects

We are interested in understanding how the presence of ζ fluctuations at a given scale

affects the behavior of ζ correlators on a different scale. In this section we will consider

potential dynamical effects in the context of single field inflationary models. For example,

dynamical effects might include a time dependence of the ζ correlators on super horizon

scales, or a change in the amplitude of correlations at horizon crossing due to the inter-

action with other modes. We distinguish these dynamical effects from projection effects

we will consider in the next section. We call projection effects simply changes in the scale

at which an observer in the late universe will measure a particular mode while dynamical

effects are at least in principle observable during inflation.1 We make this distinction be-

cause dynamical effects are basically zero and furthermore projection effects are a bit less

well defined as they depend on the properties of the Universe after inflation.

To organize our discussion we will consider in turn the potential dynamical effects from

modes longer and shorter than the one of interest.

Shorter wavelength modes. As proven in [10] the values of ζ correlators at a given

scale become constant once that scale crosses the horizon. Shorter modes, that cross the

horizon later than the mode of interest, do not have any dynamical effect on the mode

once the background evolution is specified. Short wavelength fluctuations generate tad-

poles that modify the background solution. In this paper ζ describes fluctuations around

a background history that satisfies the homogeneous equations of motion. Once we have

modified the background history or added suitable counter terms to cancel the tadpoles as

we did in [10], ζ correlators are time-independent once out of the horizon.

Longer wavelength modes. ζ becomes constant in time once a mode has a wavelength

longer that the horizon. We will call these modes background modes, ζB, as locally they

can be reabsorbed in a redefinition of the quantities in the background solution. If one is

interested in the dynamics of shorter wavelength modes in this background one can simply

include the effect of the background mode by replacing a(t) → eζBa(t) in the action for

1For example, one could consider the amplitude of modes just before Horizon crossing as a function

of the proper time of a free falling observer or the expansion rate for a given value of the scalar field as

quantities that would be changed by what we call a dynamical effect during inflation and could in principle

be observed at the time.
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the short modes. The corrections to this statement are suppressed by at least one factor

of (kL/a(t)H(t))2 where kL is the wavenumber of the background mode [16, 17].

In the presence of a long mode we can write the metric as:

ds2 = −dt2 + a(t)2e2ζBd~x2 , (2.1)

which means that a background ζB mode amounts just to an overall rescaling of the spatial

coordinates:

∆x→ eζB∆x . (2.2)

Thus the correlation function on scales short compared to the wavelength of the back-

ground mode, in the presence of that background mode ξB(∆x) is directly related to the

one in the absence of it, ξ0(∆x) by:

ξB(∆x) ≡ 〈ζζ〉|ζB (∆x) = 〈ζζ〉|ζB=0(e
−ζB∆x) ≡ ξ0(e−ζB∆x) . (2.3)

This formula is valid for all short distances, even distances inside the horizon. It is also

valid during inflation.

The power spectrum is related the the correlation function by:

PB(k) =

∫
d3x eikxξB(x) , (2.4)

which implies that

∆2
B(k) ≡ k3PB(k)

2π2
= ∆2

0(ke
−ζB ) ≡ (e−ζBk)3P0(e

−ζBk)

2π2
, (2.5)

where P0 is the power spectrum in the absence of ζB. It is important to note that this

relation is valid in any given realization of the long modes. No average over the long modes

has been taken. Notice also that ∆0 ∼ 1 close to the eternally inflating regime, when this

rescaling takes its largest numerical value.

Although the above formulas are valid for modes inside and outside the horizon and at

any point during inflation as long as the background mode is super-horizon, we are inter-

ested here in the amplitude of fluctuations when they cross the horizon, when they freeze.

We have already mentioned that there is no time evolution after that point. At leading

order in the slow roll parameters, the amplitude of fluctuations after horizon crossing in

the absence of the background mode is simply given by:

∆2
0 =

1

8π2
H4

|Ḣ|M2
Pl

∣∣∣∣∣
thc

, (2.6)

where the expression on the right hand side needs to be evaluated at the time thc when the

comoving mode k crossed the horizon, k = a(thc)H(thc). For simplicity we are just quoting

the formula valid for standard slow-roll inflationary models but our arguments are valid

in general. The reader may replace this by the formula applicable in their favorite single

clock inflationary model [18].

– 3 –
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Thus equation (2.5) implies that this expression remains valid in the presence of the

background mode,

∆2
B =

1

8π2
H4

|Ḣ|M2
Pl

∣∣∣∣∣
thc

, (2.7)

as long as we compute the horizon crossing time properly: k = a(thc)e
ζBH(thc) as expected

from eq. (2.2).

Equation (2.7) states that the amplitude of a mode only depends on the properties of

the background at horizon crossing and it is independent of the value of the longer wave-

length modes. If one specifies the moment of horizon crossing then there is no dependence

on the longer modes even in a given realization. Infrared logarithms appear only when one

computes correlation functions at a specified comoving momenta rather than for modes

labelled by the time of horizon crossing.2 This is discussed further in the appendix. Given

that the amplitude of a particular mode is fixed at horizon crossing one needs to deter-

mine the observed scale for a mode which crossed the horizon at a given point during the

evolution. We refer to this mapping between observed scale and horizon crossing time as

projection which we discuss in the next section.

3 Projection effects

Since the amplitude of fluctuations at a given scale is only determined by what was hap-

pening at horizon crossing during inflation we need to find the mapping between horizon

crossing time and scale measured by an observer in the post-inflationary universe. We refer

to this mapping as projection. In detail this mapping might be complicated and depend on

the experimental probe this late time observer uses. Depending on how the experiment is

done, eminently late time effects such as gravitational lensing or redshift distortions would

affect this mapping. Furthermore such a calculation will depend on the expansion history

after inflation and the time at which the observation is made.

Perhaps more importantly, these late time projection effects are well studied in the

astrophysical literature, the magnitude has been computed and the most important ones

such as gravitational lensing have been thoroughly studied and already detected in the CMB

and other data. Thus we want to circumvent as much as possible the late time projection

2Related considerations regarding this point have also appeared in [6, 13]. We stress that there is no

physical effect at the reheating surface from modes longer than the horizon in every single realization, not

just on average. However, it should be made clear that our statement does not mean that calculations of

the ζ power spectrum at reheating done using comoving momenta and that show an IR divergence [5, 6]

are incorrect. As we discuss in the appendix, they are correct. Indeed, one could compute a physical

observable by using comoving coordinates and by evolving non-linearly the fluctuations up to the time

of observation including all relevant projection type effects such as lensing, gravitational redshifts, etc.

One could follow IR divergencies in intermediate results but in the end see that the final result has no IR

divergencies. The IR divergencies in the power spectrum at reheating cancel out with effects coming from

the three- and four-point functions of ζ at reheating. Our way of presenting the results makes this manifest

already in the intermediate results at reheating, proving in this way that the IR divergencies from modes

longer than the horizon are not harmful. It is still true that in order to compute an observable quantity,

one should evolve our result non-linearly up to the detector.’
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effects and calculate properties at the reheating surface. We will still calculate something

that is directly related to what observers will measure. At least for some probes, like the

CMB bispectrum, calculations in the literature already account for all the projection effects

The fundamental problem is to relate the comoving coordinates used in the calculation

to a more physical measure of length. To do so we will simply use the physical volume

of a region. This procedure corresponds to counting particles present in the region after

reheating and using the enclosed number of particles as a measure of the physical size

of the region.3 Thus we are asking questions about the curvature of surfaces of constant

temperature in the late universe as a function of their size as measured by the number of

particles contained in the region. In the late universe we could use the number of dark

matter particles or equivalently the mass in dark matter particles enclosed in the volume.

Not only is this measure of size a well defined physical choice, but the amplitude of pertur-

bations at a given mass scale is directly related to the abundance of objects of that mass

that will form in the late Universe.

Equivalently one could think of the case of the CMB and consider the amplitude of

fluctuations at the first acoustic peak. That scale corresponds to the sound horizon at

the epoch of recombination. This physical scale, the scale of the acoustic peak, contains

a number of particles that can easily be calculated. For example the number of CMB

photons is given by NCMB ∝ T 3
CMBc

3
SH
−3, where cS is the sound speed and all quantities

are evaluated at recombination. So when computing the amplitude of fluctuations as a

function of scale measured in terms of the acoustic scale, one is again basically using the

enclosed number of particles to define length scales. The number of enclosed particles can

then be easily mapped into a volume in the reheating surface.4

To find the mapping we first write down the range of comoving coordinates that cor-

respond to a Hubble volume at the moment of horizon crossing,

H(thc)
−3 = a3(thc)e

3ζ(thc)Vx , (3.1)

where Vx is the comoving volume of the region and ζ has been taken to be constant across

the region. Curvature fluctuations at this scale are given by

∆2 =
1

8π2
H4

|Ḣ|M2
Pl

∣∣∣∣∣
thc

. (3.2)

At reheating this region of comoving coordinates encloses a physical volume Vrh given by

Vrh = a3(trh)

∫
d3x e3ζ(trh) =

a3(trh)

a3(thc)
H(thc)

−3
∫
d3x

Vx
e3(ζ(trh)−ζ(thc)) . (3.3)

We note that ζ(trh) is not constant across the volume but we have suppressed its x depen-

dence to keep the notation simple. This equation implies that fluctuations on scale larger

3Perhaps it might be suggested that to avoid ambiguities we should count entropy which is conserved

in the subsequent FRW evolution rather than particles. However this distinction has little relevance, all

that is important is that the late time observer uses the number of particles of some species to establish a

measure of scale. Any such measure is proportional to the volume of the region at reheating.
4Our comments about using entropy apply here but just as before this complication is immaterial.
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than the one we are considering (kV
1/3
x � 1), do not have any influence on the projection

effects we are calculating because for those scales ζ takes the same value at horizon crossing

and reheating and thus cancels in equation (3.3):

ζ(trh)− ζ(thc) =

∫
d3k

(2π)3
(ζk(trh)− ζk(thc)) '

∫
kV

1/3
x &1

d3k

(2π)3
(ζk(trh)− ζk(thc)) . (3.4)

We emphasize again that this does not mean that this longer modes would not affect

the measurements of a late time observer. Provided the modes are shorter than the horizon

at the time of the observation they will contribute to the late time projection effects (eg.

gravitational lensing) as calculated in the standard fashion. It is important to also note

that once the modes are inside the horizon in the late Universe they also have dynamical

effects on other modes which are also inside the horizon. Equation (3.3) just makes the

perhaps trivial point that modes larger than the horizon in addition to not having any

dynamical effects also do not have any projection effects.

If one were to calculate the reheating volume of a fixed range of comoving scales there

would be no cancelation and one would encounter an infrared divergence, but this diver-

gence is just the result of not calculating a physically relevant quantity. The divergence

comes from comparing power at widely different physical scales in different regions of the

Universe. As the length of inflation increases, the variance in the relation between a co-

moving scale and a physical scale becomes progressively larger, leading to an IR divergence

in the amplitude of fluctuations at fixed comoving scale.

Modes on scales shorter that the one of interest contribute to the projection effects as

they do not cancel in the difference ζ(trh)− ζ(thc). In equation (3.3) the reheating volume

is a stochastic variable that changes from realization to realization.5 In order to get a first

estimate of the effect we will first consider cases for which 〈ζ2〉 � 1 so we can expand the

exponential in equation (3.3) in a Taylor series. We can then write

Vrh =
a3(trh)

a3(thc)
H(thc)

−3
∫
d3x

Vx

(
1 + 3(ζ(trh)− ζ(thc) +

9

2
(ζ(trh)− ζ(thc)

2 + · · ·
)

≈ a3(trh)

a3(thc)
H(thc)

−3
(

1 +
9

2

1

Vx

∫
kV

1/3
x >1

d3k

(2π)3
|ζ(k)|2 + · · ·

)
. (3.5)

We explicitly show that only short modes contribute to the integral and we have used that

for this modes the spatial integral of ei(k−k
′)x over the volume can be approximated by

a delta function. Equivalently we could have expanded the short wavelength fluctuations

inside of Vx using a orthonormal set of modes over the region, or assume periodic boundary

conditions. The results are independent of these choices.

Though this is not strictly necessary, to make further progress let us take the expecta-

tion value of (3.5). This will turn out to capture the leading result as the variance of this

5Strictly speaking Vrh is a quantum operator. However because we are dealing with modes that are

larger than the horizon this distinction is not important. Furthermore although we have concentrated on

situations where the fluctuations are quantum mechanical in nature, our conclusion also apply to examples

where fluctuations are basically classical such those treated in [19–21].

– 6 –
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quantity is usually negligible. We get:

〈Vrh〉 ≈
1

H(thc)3
a3(trh)

a3(thc)

(
1 +

9

2

1

Vx

∫
kV

1/3
x >1

d3k

(2π)3
〈|ζ(k)|2〉+ · · ·

)
. (3.6)

We can now use that
a(trh)

a(t)
= eNe , (3.7)

where Ne is the classical number of e-foldings from time t to the reheating time trh. For

an approximately scale invariant spectrum we also have that

1

Vx

∫
k′3Vx>1

d3k′

(2π)3
〈|ζ(k)|2〉 =

∫
k′>k

d ln k′ ∆2 ≈ ∆2Ne , (3.8)

so that

〈Vrh〉 '
(

1 +
9

2
∆2Ne

)
e3Ne

H3(thc)
. (3.9)

The factor e3Ne represents the classical expansion from the horizon crossing time to the

time of reheating. The prefactor is a positive correction that is due to the short scale

fluctuations that freeze from the time when the mode we consider crossed the horizon up

to reheating. These fluctuations enhance the overall expansion undergone by the universe

in that amount of time. This can be thought of as a quantum generalization of the classical

expansion history: the universe expands more that what would have done classically. This

enhancement is proportional to the power spectrum of the fluctuations and to the classical

number of e-foldings.

Fluctuations that crossed the horizon at a time thc will appear on a scale containing

a mass proportional to Vrh in equation (3.9) and will have an amplitude given by equa-

tion (3.2). Note that the enclosed mass in completely independent of the late time history

of the Universe, the rate of growth of structure, etc. If we wanted to compute a lengthscale

for the mode, we can just take the cubic root of equation (3.9).

Equation (3.9) implies that an observed scale crossed the horizon at a different point

during the inflationary history. At lowest order in slow-roll it is easy to obtain an expression

for the change in the value of Ne,

δNe = −3

2
∆2Ne . (3.10)

That is to say a fixed observed scale crossed the horizon closer to the end of inflation as a

result of the enhanced expansion. This means that the amplitude of fluctuations on that

scale is different. In fact it is equal to the amplitude of fluctuations that modes of a shorter

scale would have in the absence of the effect we are considering. As a result the amplitude

of fluctuations due to our effect is directly given by the tilt:

δ ln(∆2) =
3

2
(ns − 1)∆2Ne . (3.11)

We stress that this effect should not be interpreted as a time-dependence of ζ. It is

simply the projection effect of a given wavelength due to the subsequent expansion of the

– 7 –
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universe. Already at tree-level, that is neglecting short scale fluctuations, there are such

effects because the final projected scale of a comoving wavenumber depends on the subse-

quent history of the universe. This happens for example through the number of inflationary

e-foldings or through the reheating temperature. Eq. (3.11) is a quantum enhancement of

the projection effect due to the short scale fluctuations that happens during the inflation-

ary period. Short scale fluctuations affect the projection of a long mode even after the

inflationary phase: as an example in [22, 23] it was shown that the presence of short scale

inhomogeneities changes the equation of state w, and so the overall expansion, of a matter

dominated universe with large scale gravitational potential fluctuations of order 10−5 from

w = 0 to w ∼ 10−5.

So far we have approximated the stochastic enhancement of the expansion

e3(ζ(trh)−ζ(thc)) with its expectation value. This is a good approximation only if its variance

is small. This is indeed the case. In fact, the physical effect at the core of the enhanced

expansion can be depicted in figure 1. As the mode we consider crosses the horizon and

continues to expand, modes of shorter wavelength keep coming out of the horizon and

generate large fluctuations. Fluctuations will push the inflation forward or backward in its

trajectory lengthening or shortening the duration of inflation in that patch. However, since

backward fluctuations lead to more expansion and therefore to more fluctuations that can

result in additional enhanced expansion, the overall effect is to enhance the expansion of

the universe. This is the effect on average.

What about the variance? The variance results from the variance in the amplitudes

of the fluctuations of all the short modes. Now, if the mode is much shorter than the

one we consider there are many of those fluctuations within one wavelength of the mode

of interest. Therefore their contribution to the variance will be small as there are many

independent realizations inside the mode of interest. However for the order one number

of modes that come out of the horizon a few e-folding after our mode has crossed the

horizon (see figure 1), the variance from realization to realization will be significant.

Their contribution to the variance of Vrh will simply be the variance of ∆2, which has no

enhancement of Ne. A simple computation using equation (3.5) agrees with this intuition.

In summary the variance of Vrh is not enhanced by Ne and is simply of order

(Variance [Vrh])1/2 =
(
〈V 2

rh〉 − 〈Vrh〉2
)1/2 ∼ ∆2 . (3.12)

The variance is smaller than the change in expectation value by a factor of Ne. This is a

nice result. The quantum-enhanced expansion is indeed of stochastic nature, but to a very

good approximation has no variance: a mode that crossed the horizon at a given point

during inflation will not end up having a scale given by the classical formula, but it will

end up always basically on the same scale in every realization.

Finally one could wonder about our choice of distance measure. Rather than using the

volume of the enclosed region, one might want to use something else such as directly the

distance between two points along a geodesic of the perturbed or unperturbed metrics. In

general these different measures will be non-linearly related and one might wonder if one

would get significantly different results if one were to study different cases. However, results

will be the basically the same if one wants to track only terms enhanced by Ne. This is

– 8 –
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give averaged effect

Space

Fluctuation

Fluctuations

variance

Expanding Long Wavelength Horizon Crossing
Short Wavelength

First fluctuation
determines

Reheating Surface

Many independent fluctuations

Time

Figure 1. A long wavelength mode crosses the horizon and keeps expanding. Short wavelength

modes continuously come out of the horizon. They affect the duration of inflation in the region,

ultimately changing the physical volume Vrh spanned by one comoving wavenumber k on the

reheating surface. The effects is to increase the average of this volume by an amount of order

δVrh ∼ Vrh ∆Ne. The factor of Ne implies that the effect increases with the number of e-folding to

the end of Inflation. The variance of this increase in volume is only proportional to ∆, with no Ne

enhancement and it is determined by the fluctuations that cross the horizon within a few Hubble

times after the mode k crossed. The effect for subsequent fluctuations is very well approximated

by its average, as there are many of these modes inside the mode k.

so because although the different quantities are stochastic, their variance is not enhanced.

Thus when one tracks only terms enhanced by Ne one can think of the mapping between

horizon crossing and scale to be deterministic. Take for example the difference between the

distance along the perturbed or unperturbed geodesics. The correction from the standard

answer for the two results will appear different, even the coefficient in front of the factor

of Ne will differ. However before interpreting these corrections one needs to relate them to

distances as measured by a late time observer. Once this is done, the apparent difference

will disappear. If for example one uses enclosed mass to measure distance as we have done

in this paper, the apparent differences between the scaling of Ne will disappear and will be

compensated by a difference in the mapping between the two distances and enclosed mass

which is non-linear but not stochastic. In this paper we chose the encoded mass because

it is well defined, easy to compute and directly related to observable physical quantities.6

6In some naive sense, our prescription amounts to a rewriting of the usual power spectrum in different,

more physical, length scales. This however is non-trivial, because in our variables effects of modes that are

longer than the horizon trivially decouple from the calculation, so that it is made manifest that there are no

physical IR divergencies coming from modes with longer wavelength on the surface of reheating. Notice addi-

tionally that this is a very unusual change of coordinates. Usually changes of coordinates are done on a man-

– 9 –
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Let us summarize what we found so far by saying that the physical scale on which

modes that cross the horizon at a given time during inflation is projected, is in general

different from what the standard one would give. This is due to the effect of modes shorter

than the one we consider, modes that come out of the horizon after that mode. There

is no effect from longer modes. There is thus a physical, potentially observable effect: a

mode on a given physical scale has crossed the horizon at a different time than what would

have been computed classically. This effect is enhanced by Ne, the number of e-foldings

to the end of inflation. In our Universe this effect is of course extremely small.

Re-summing the kinematical effects and eternal inflation. Although not true

in our observable universe, the expectation value of e3(ζ(trh)−ζ(thc)) could becomes large

if Ne∆
2 & 1. In fact, this enhanced quantum expansion that we have been discussing is

nothing but the perturbative version of slow-roll eternal inflation. Slow-roll eternal inflation

is the limiting case in which the enhanced quantum expansion is so large to give a non-

zero probability for inflation never to end. This suggests looking at the literature of slow

eternal inflation. Indeed, the probability distribution for the resulting volume as a function

of the classical number of e-foldings and related quantities have been computed both in

the regime of eternal and non-eternal inflation [24–27]. The analysis is quite complex so,

we will not present it in detail here. We simply quote the final result for the expectation

value and the variance of Vrh in the regime far from eternal inflation. They read [25],

〈e3(ζ(trh)−ζ(thc))〉 ' Exp

[
6Ne

1 +
√

1− 1/Ω

]
, Ω = −4π2

3

ḢM2
Pl

H4
, (3.13)

Variance[e3(ζ(trh)−ζ(thc))] ' 1

Ω

(
1 +

√
1− 1

Ω

)−1
.

Eternal Inflation happens when Ω < 1. Notice that if we expand perturbatively (1/Ω� 1)

the answer agrees we the one we had before. We see that the enhanced overall expansion

can be very large, but it is at most of order the double of the classical number of e-foldings,

with corrections suppressed by slow-roll parameters, and it occurs at the transition to

eternal inflation [25]. The variance is always at most of order one number of e-folding,

even in the regime close to eternal inflation.

4 Conclusions

Although coupling between modes of very different scales does not have any significant

dynamical effect during inflation it can lead to interesting projection effects. These modes

change the relation between scale and time of horizon crossing. We have argued that there

are no infrared projection effects in physical questions, that is there are no effects from

modes of longer wavelength than the one of interest. These potential effects cancel when

ifold and are deterministic functions of the coordinates. Instead, the mapping from comoving coordinates to

our physical variables is a function of a stochastic quantity ζ, which changes on a realization by realization

basis, and that only approximately can be replaced with its average. On every realization, not just on aver-

age, the effect of long modes cancels exactly once we go to the physical coordinates defined in that realization.

– 10 –
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computing fluctuations as a function of physically measurable scales. As an illustration we

used the enclosed number of particles, or enclosed mass, as our measure of size. If we had

computed the amplitude of fluctuations at a fixed comoving scale, we would have found

an IR divergence. In our case this divergence is just a consequence of not having asked a

physically relevant question. It can be made equal to zero in the extreme squeezed limit

by a proper redefinition of the observables.

Modes on scales smaller than the one of interest do induce projection effects as defined

in this paper. They change the mapping between observed scale and time of horizon

crossing. The correction to the classical mapping is enhanced by a factor of Ne. Although

this mapping is stochastic, its variance is not enhanced by Ne so it is in a sense almost

deterministic. There is a direct connection between the results we presented and studies

of slow-roll eternal inflation. The full distribution for the volume at reheating has been

computed in those studies. We made use of that literature to re-sum the perturbative

calculation and get a result which is valid even if Ne∆
2 � 1.

If one is interested in predicting the outcome of a specific type of observation in the

post-inflationary universe, the calculations in this paper are not a replacement for doing

the full calculation. In general all modes inside the horizon at the time of observation

will have both a dynamical and a projection effect on a mode of interest. The details will

depend on the observable in question. As we stated before, in many circumstances these

effects have been studied in the astrophysics literature. The effects we computed are small

so studies have focused on other statistics such as the bispectrum, which in the case of

the CMB is marginally detectable. A consistent calculation using the standard techniques

of any measurable quantity would include the effect uncovered in this paper, but we have

found it using rather simple physical arguments.
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A Two point function in comoving momenta

In this appendix we make contact with existing calculations in the literature that compute

the two point function at some given comoving momentum k [5, 6]. At issue are the effects

of the long wavelength modes and the associated infrared divergencies. In any realization,

even before averaging over the long modes, the amplitude of fluctuations at a smaller scale

k is given by:

∆2
B(k) = ∆2

0(ke
−ζB ) . (A.1)

– 11 –
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All we need to do is expand equation (A.1) in Taylor series,

∆2
B(k) ≈ ∆2

0 −
∂∆2

0

∂ ln k
ζB +

1

2

∂2∆2
0

∂ ln k2
ζ2B + · · · , (A.2)

and take expectation value over the long modes:

〈∆2
B〉 ≈ ∆2

0 +
1

2

∂2∆2
0

∂ ln k2
〈ζ2B〉+ · · · . (A.3)

We can use the standard definitions of the tilt (ns) and the running (α):

ns − 1 =
∂ ln ∆2

0

∂ ln k
; α =

∂ns
∂ ln k

, (A.4)

to obtain:

〈∆2
B〉 ≈ ∆2

0(k)

[
1 +

1

2

(
(ns − 1)2 + α

)
〈ζ2B〉+ · · ·

]
. (A.5)

Now the expectation value is:

〈ζ2B〉 =

∫
k′<k

d ln k′∆2(k′) ≈ ∆0 log(kL) ' ∆0N
beginning
e , (A.6)

where k′ < k characterizes the modes that we are including in the background for a given

k and log(kL) ' Nbeginning
e is the number of e-foldings from the beginning of inflation to

when the mode k crosses the horizon and L is an IR cut-off. Notice that Nbeginning
e can

be a huge number, possibly even without an upper bound as in eternal inflation, where

∆0 ∼ 1, further enhancing the effect. Although this result might seem naively worrisome

it is not. We have already pointed out that this result is equivalent to the statement that

long wavelength modes have no physical effect. Thus this apparent divergence disappears

in a calculation of a physical observable.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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