52 research outputs found

    Cytokine expression in malaria-infected non-human primate placentas

    Get PDF
    Malaria parasites are known to mediate the induction of inflammatory immune responses at the maternal-foetal interface during placental malaria (PM) leading to adverse consequences like pre-term deliveries and abortions. Immunological events that take place within the malaria-infected placental micro-environment leading to retarded foetal growth and disruption of pregnancies are among the critical parameters that are still in need of further elucidation. The establishment of more animal models for studying placental malaria can provide novel ways of circumventing problems experienced during placental malaria research in humans such as inaccurate estimation of gestational ages. Using the newly established olive baboon (Papio anubis)-Plasmodium knowlesi (P. knowlesi) H strain model of placental malaria, experiments were carried out to determine placental cytokine profiles underlying the immunopathogenesis of placental malaria. Four pregnant olive baboons were infected with blood stage P. knowlesi H strain parasites on the one fiftieth day of gestation while four other uninfected pregnant olive baboons were maintained as uninfected controls. After nine days of infection, placentas were extracted from all the eight baboons through cesarean surgery and used for the processing of placental plasma and sera samples for cytokine sandwich enzyme linked immunosorbent assays (ELISA). Results indicated that the occurrence of placental malaria was associated with elevated concentrations of tumour necrosis factor alpha (TNF-{\alpha}) and interleukin 12 (IL-12). Increased levels of IL-4, IL-6 and IL-10 and interferon gamma (IFN-{\gamma}) levels were detected in uninfected placentas. These findings match previous reports regarding immunity during PM thereby demonstrating the reliability of the olive baboon-P. knowlesi model for use in further studies.Comment: Open Veterinary Journal 1st June 2012. Seven pages, Three Figures. arXiv admin note: text overlap with arXiv:1201.323

    Rotavirus group : a genotype circulation patterns across Kenya before and after nationwide vaccine introduction, 2010-2018

    Get PDF
    Background Kenya introduced the monovalent G1P [8] Rotarix® vaccine into the infant immunization schedule in July 2014. We examined trends in rotavirus group A (RVA) genotype distribution pre- (January 2010–June 2014) and post- (July 2014–December 2018) RVA vaccine introduction. Methods Stool samples were collected from children aged < 13 years from four surveillance sites across Kenya: Kilifi County Hospital, Tabitha Clinic Nairobi, Lwak Mission Hospital, and Siaya County Referral Hospital (children aged < 5 years only). Samples were screened for RVA using enzyme linked immunosorbent assay (ELISA) and VP7 and VP4 genes sequenced to infer genotypes. Results We genotyped 614 samples in pre-vaccine and 261 in post-vaccine introduction periods. During the pre-vaccine introduction period, the most frequent RVA genotypes were G1P [8] (45.8%), G8P [4] (15.8%), G9P [8] (13.2%), G2P [4] (7.0%) and G3P [6] (3.1%). In the post-vaccine introduction period, the most frequent genotypes were G1P [8] (52.1%), G2P [4] (20.7%) and G3P [8] (16.1%). Predominant genotypes varied by year and site in both pre and post-vaccine periods. Temporal genotype patterns showed an increase in prevalence of vaccine heterotypic genotypes, such as the commonly DS-1-like G2P [4] (7.0 to 20.7%, P < .001) and G3P [8] (1.3 to 16.1%, P < .001) genotypes in the post-vaccine introduction period. Additionally, we observed a decline in prevalence of genotypes G8P [4] (15.8 to 0.4%, P < .001) and G9P [8] (13.2 to 5.4%, P < .001) in the post-vaccine introduction period. Phylogenetic analysis of genotype G1P [8], revealed circulation of strains of lineages G1-I, G1-II and P [8]-1, P [8]-III and P [8]-IV. Considerable genetic diversity was observed between the pre and post-vaccine strains, evidenced by distinct clusters. Conclusion Genotype prevalence varied from before to after vaccine introduction. Such observations emphasize the need for long-term surveillance to monitor vaccine impact. These changes may represent natural secular variation or possible immuno-epidemiological changes arising from the introduction of the vaccine. Full genome sequencing could provide insights into post-vaccine evolutionary pressures and antigenic diversity

    In vitro and in vivo antileishmanial efficacy of a combination therapy of diminazene and artesunate against Leishmania donovani in BALB /c mice

    Get PDF
    The in vitro and in vivo activity of diminazene (Dim), artesunate (Art) and combination of Dim and Art (Dim-Art) against Leishmania donovani was compared to reference drug; amphotericin B. IC50 of Dim-Art was found to be 2.28±0.24μ2.28 \pm 0.24 \mu g/mL while those of Dim and Art were 9.16±0.3μ9.16 \pm 0.3 \mu g/mL and 4.64±0.48μ4.64 \pm 0.48 \mu g/mL respectively. The IC50 for Amphot B was 0.16±0.32μ0.16 \pm 0.32 \mu g/mL against stationary-phase promastigotes. In vivo evaluation in the L. donovani BALB/c mice model indicated that treatments with the combined drug therapy at doses of 12.5 mg/kg for 28 consecutive days significantly (p<0.001p < 0.001) reduced parasite burden in the spleen as compared to the single drug treatments given at the same dosages. Although parasite burden was slightly lower (p<0.05p < 0.05) in the Amphot B group than in the Dim-Art treatment group, the present study demonstrates the positive advantage and the potential use of the combined therapy of Dim-Art over the constituent drugs, Dim or Art when used alone. Further evaluation is recommended to determine the most efficacious combination ratio of the two compounds.Comment: 4 Pages, 3 Figure

    Multiple introductions and predominance of 3 rotavirus group A genotype G3P[8] in Kilifi, coastal Kenya, 4 years after nationwide vaccine introduction

    Get PDF
    Globally, rotavirus group A (RVA) remains a major cause of severe childhood diarrhea, despite the use of vaccines in more than 100 countries. RVA sequencing for local outbreaks facilitates investigation into strain composition, origins, spread, and vaccine failure. In 2018, we collected 248 stool samples from children aged less than 13 years admitted with diarrheal illness to Kilifi County Hospital, coastal Kenya. Antigen screening detected RVA in 55 samples (22.2%). Of these, VP7 (G) and VP4 (P) segments were successfully sequenced in 48 (87.3%) and phylogenetic analysis based on the VP7 sequences identified seven genetic clusters with six different GP combinations: G3P[8], G1P[8], G2P[4], G2P[8], G9P[8] and G12P[8]. The G3P[8] strains predominated the season (n = 37, 67.2%) and comprised three distinct G3 genetic clusters that fell within Lineage I and IX (the latter also known as equine-like G3 Lineage). Both the two G3 lineages have been recently detected in several countries. Our study is the first to document African children infected with G3 Lineage IX. These data highlight the global nature of RVA transmission and the importance of increasing global rotavirus vaccine coverage

    A Global Network of Science and Technology Advice in Foreign Ministries

    Get PDF
    This paper is a product of the International Dialogue on Science and Technology Advice in Foreign Ministries (Vienna Dialogue) in October 2016, involving more than twenty nations and several international organisations. The event was a key step to further develop the Foreign Minister Science and Technology Advisor Network (FMSTAN), growing from an initial group of five nations. The Vienna Dialogue was convened by the Fletcher School of Law and Diplomacy, Tufts University, and the International Institute for Applied Systems Analysis (IIASA) at the Vienna headquarters of IIASA, bringing together diplomats from foreign ministries to consider the value of evidence for informed decision-making by nations with regard to issues, impacts and resources within, across and beyond national boundaries. The evidence comes from the natural and social sciences with engineering and medicine as well as other areas of technology. By building common interests among nations, science is a tool of diplomacy, promoting cooperation and preventing conflict in our world. Science diplomacy was discussed as an international, interdisciplinary and inclusive process to help balance national interests and common interests in view of urgencies today and across generations in our globally-interconnected civilization

    Leishmania donovani: Immunostimulatory Cellular Responses of Membrane and Soluble Protein Fractions of Splenic Amastigotes in Cured Patient and Hamsters

    Get PDF
    Visceral leishmaniasis (VL), caused by the intracellular parasite Leishmania donovani, L. chagasi and L. infantum is characterized by defective cell-mediated immunity (CMI) and is usually fatal if not treated properly. An estimated 350 million people worldwide are at risk of acquiring infection with Leishmania parasites with approximately 500,000 cases of VL being reported each year. In the absence of an efficient and cost-effective antileishmanial drug, development of an appropriate long-lasting vaccine against VL is the need of the day. In VL, the development of a CMI, capable of mounting Th1-type of immune responses, play an important role as it correlate with recovery from and resistance to disease. Resolution of infection results in lifelong immunity against the disease which indicates towards the feasibility of a vaccine against the disease. Most of the vaccination studies in Leishmaniasis have been focused on promastigote- an infective stage of parasite with less exploration of pathogenic amastigote form, due to the cumbersome process of its purified isolation. In the present study, we have isolated and purified splenic amastigotes of L. donovani, following the traditional protocol with slight modification. These were fractionated into five membranous and soluble subfractions each i.e MAF1-5 and SAF1-5 and were subjected for evaluation of their ability to induce cellular responses. Out of five sub-fractions from each of membrane and soluble, only four viz. MAF2, MAF3, SAF2 and SAF3 were observed to stimulate remarkable lymphoproliferative, IFN-γ, IL-12 responses and Nitric Oxide production, in Leishmania-infected cured/exposed patients and hamsters. Results suggest the presence of Th-1 type immunostimulatory molecules in these sub-fractions which may further be exploited for developing a successful subunit vaccine from the less explored pathogenic stage against VL

    Inhibition of Adaptive Immune Responses Leads to a Fatal Clinical Outcome in SIV-Infected Pigtailed Macaques but Not Vervet African Green Monkeys

    Get PDF
    African green monkeys (AGM) and other natural hosts for simian immunodeficiency virus (SIV) do not develop an AIDS-like disease following SIV infection. To evaluate differences in the role of SIV-specific adaptive immune responses between natural and nonnatural hosts, we used SIVagmVer90 to infect vervet AGM and pigtailed macaques (PTM). This infection results in robust viral replication in both vervet AGM and pigtailed macaques (PTM) but only induces AIDS in the latter species. We delayed the development of adaptive immune responses through combined administration of anti-CD8 and anti-CD20 lymphocyte-depleting antibodies during primary infection of PTM (n = 4) and AGM (n = 4), and compared these animals to historical controls infected with the same virus. Lymphocyte depletion resulted in a 1-log increase in primary viremia and a 4-log increase in post-acute viremia in PTM. Three of the four PTM had to be euthanized within 6 weeks of inoculation due to massive CMV reactivation and disease. In contrast, all four lymphocyte-depleted AGM remained healthy. The lymphocyte-depleted AGM showed only a trend toward a prolongation in peak viremia but the groups were indistinguishable during chronic infection. These data show that adaptive immune responses are critical for controlling disease progression in pathogenic SIV infection in PTM. However, the maintenance of a disease-free course of SIV infection in AGM likely depends on a number of mechanisms including non-adaptive immune mechanisms

    SIVagm Infection in Wild African Green Monkeys from South Africa: Epidemiology, Natural History, and Evolutionary Considerations

    Get PDF
    Pathogenesis studies of SIV infection have not been performed to date in wild monkeys due to difficulty in collecting and storing samples on site and the lack of analytical reagents covering the extensive SIV diversity. We performed a large scale study of molecular epidemiology and natural history of SIVagm infection in 225 free-ranging AGMs from multiple locations in South Africa. SIV prevalence (established by sequencing pol, env, and gag) varied dramatically between infant/juvenile (7%) and adult animals (68%) (p<0.0001), and between adult females (78%) and males (57%). Phylogenetic analyses revealed an extensive genetic diversity, including frequent recombination events. Some AGMs harbored epidemiologically linked viruses. Viruses infecting AGMs in the Free State, which are separated from those on the coastal side by the Drakensberg Mountains, formed a separate cluster in the phylogenetic trees; this observation supports a long standing presence of SIV in AGMs, at least from the time of their speciation to their Plio-Pleistocene migration. Specific primers/probes were synthesized based on the pol sequence data and viral loads (VLs) were quantified. VLs were of 104-106 RNA copies/ml, in the range of those observed in experimentally-infected monkeys, validating the experimental approaches in natural hosts. VLs were significantly higher (107-108 RNA copies/ml) in 10 AGMs diagnosed as acutely infected based on SIV seronegativity (Fiebig II), which suggests a very active transmission of SIVagm in the wild. Neither cytokine levels (as biomarkers of immune activation) nor sCD14 levels (a biomarker of microbial translocation) were different between SIV-infected and SIV-uninfected monkeys. This complex algorithm combining sequencing and phylogeny, VL quantification, serology, and testing of surrogate markers of microbial translocation and immune activation permits a systematic investigation of the epidemiology, viral diversity and natural history of SIV infection in wild African natural hosts. © 2013 Ma et al
    corecore