25,074 research outputs found

    Observationally-Motivated Analysis of Simulated Galaxies

    Get PDF
    The spatial and temporal relationships between stellar age, kinematics, and chemistry are a fundamental tool for uncovering the physics driving galaxy formation and evolution. Observationally, these trends are derived using carefully selected samples isolated via the application of appropriate magnitude, colour, and gravity selection functions of individual stars; conversely, the analysis of chemodynamical simulations of galaxies has traditionally been restricted to the age, metallicity, and kinematics of `composite' stellar particles comprised of open cluster-mass simple stellar populations. As we enter the Gaia era, it is crucial that this approach changes, with simulations confronting data in a manner which better mimics the methodology employed by observers. Here, we use the \textsc{SynCMD} synthetic stellar populations tool to analyse the metallicity distribution function of a Milky Way-like simulated galaxy, employing an apparent magnitude plus gravity selection function similar to that employed by the RAdial Velocity Experiment (RAVE); we compare such an observationally-motivated approach with that traditionally adopted - i.e., spatial cuts alone - in order to illustrate the point that how one analyses a simulation can be, in some cases, just as important as the underlying sub-grid physics employed.Comment: Accepted for publication in PoS (Proceedings of Science): Nuclei in the Cosmos XIII (Debrecen, Jul 2014); 6 pages; 3 figure

    Galactic Cannibalism: the Origin of the Magellanic Stream

    Full text link
    We are in a privileged location in the Universe which allows us to observe galactic interactions from close range -- the merger of our two nearest dwarf satellite galaxies, the LMC and SMC. It is important to understand the local merger process before we can have confidence in understanding mergers at high redshift. We present high resolution Nbody+SPH simulations of the disruption of the LMC and SMC and the formation of the Magellanic Stream, and discuss the implications for galaxy formation and evolution.Comment: 2 pages, 1 figure, to appear in "The Evolution of Galaxies II: Basic Building Blocks", (2002) ed. M. Sauvage et al. (Kluwer

    The [?/Fe] ratios of very metal-poor stars within the integrated galactic initial mass function theory

    Get PDF
    The aim of this paper is to quantify the amplitude of the predicted plateau in [α/Fe] ratios associated with the most metal-poor stars of a galaxy. We assume that the initial mass function (IMF) in galaxies is steeper if the star formation rate (SFR) is low – as per the integrated galactic initial mass function (IGIMF) theory. A variant of the theory, in which the IGIMF depends upon the metallicity of the parent galaxy, is also considered. The IGIMF theory predicts low [α/Fe] plateaus in dwarf galaxies, characterized by small SFRs. The [α/Fe] plateau is up to 0.7 dex lower than the corresponding plateau of the Milky Way. For a universal IMF one should expect instead that the [α/Fe] plateau is the same for all the galaxies, irrespective of their masses or SFRs. Assuming a strong dependence of the IMF on the metallicity of the parent galaxy, dwarf galaxies can show values of the [α/Fe] plateau similar to those of the Milky Way, and almost independent of the SFR. The [Mg/Fe] ratios of the most metal-poor stars in dwarf galaxies satellites of the Milky Way can be reproduced either if we consider metallicity-dependent IMFs or if the early SFRs of these galaxies were larger than we presently think. Present and future observations of dwarf galaxies can help disentangle between these different IGIMF formulations

    On Dwarf Galaxies as the Source of Intracluster Gas

    Get PDF
    Recent observational evidence for steep dwarf galaxy luminosity functions in several rich clusters has led to speculation that their precursors may be the source of the majority of gas and metals inferred from intracluster medium (ICM) x-ray observations. Their deposition into the ICM is presumed to occur through early supernovae-driven winds, the resultant systems reflecting the photometric and chemical properties of the low luminosity dwarf spheroidals and ellipticals we observe locally. We consider this scenario, utilising a self-consistent model for spheroidal photo-chemical evolution and gas ejection via galactic superwinds. Insisting that post-wind dwarfs obey the observed colour-luminosity-metallicity relations, we conclude that the bulk of the ICM gas and metals does not originate within their precursors.Comment: 43 pages, 8 figures, LaTeX, also available at http://msowww.anu.edu.au/~gibson/publications.html, to appear in ApJ, Vol 473, 1997, in pres

    Properties of simulated Milky Way-mass galaxies in loose group and field environments

    Get PDF
    We test the validity of comparing simulated field disk galaxies with the empirical properties of systems situated within environments more comparable to loose groups, including the Milky Way's Local Group. Cosmological simulations of Milky Way-mass galaxies have been realised in two different environment samples: in the field and in environments with similar properties to the Local Group. Apart from the environments of the galaxies, the samples are kept as homogeneous as possible with equivalent ranges in last major merger time, halo mass and halo spin. Comparison of these two samples allow for systematic differences in the simulations to be identified. Metallicity gradients, disk scale lengths, colours, magnitudes and age-velocity dispersion relations are studied for each galaxy in the suite and the strength of the link between these and environment of the galaxies is studied. The bulge-to-disk ratio of the galaxies show that these galaxies are less spheroid dominated than many other simulated galaxies in literature with the majority of both samples being disk dominated. We find that secular evolution and mergers dominate the spread of morphologies and metallicity gradients with no visible differences between the two environment samples. In contrast with this consistency in the two samples there is tentative evidence for a systematic difference in the velocity dispersion-age relations of galaxies in the different environments. Loose group galaxies appear to have more discrete steps in their velocity dispersion-age relations. We conclude that at the current resolution of cosmological galaxy simulations field environment galaxies are sufficiently similar to those in loose groups to be acceptable proxies for comparison with the Milky Way provided that a similar assembly history is considered.Comment: 16 pages, 11 figures, abstract abridged for arXiv. Accepted for publication in Astronomy & Astrophysic

    CHANDRA observations of the NGC 1550 galaxy group -- implication for the temperature and entropy profiles of 1 keV galaxy groups

    Full text link
    We present a detailed \chandra study of the galaxy group NGC 1550. For its temperature (1.37±\pm0.01 keV) and velocity dispersion (\sim 300 km s1^{-1}), the NGC 1550 group is one of the most luminous known galaxy groups (Lbol_{\rm bol} = 1.65×1043\times10^{43} erg s1^{-1} within 200 kpc, or 0.2 \rv). We find that within 60\sim 60 kpc, where the gas cooling time is less than a Hubble time, the gas temperature decreases continuously toward the center, implying the existence of a cooling core. The temperature also declines beyond \sim 100 kpc (or 0.1 \rv). There is a remarkable similarity of the temperature profile of NGC 1550 with those of two other 1 keV groups with accurate temperature determination. The temperature begins to decline at 0.07 - 0.1 \rv, while in hot clusters the decline begins at or beyond 0.2 \rv. Thus, there are at least some 1 keV groups that have significantly different temperature profiles from those of hot clusters, which may reflect the role of non-gravitational processes in ICM/IGM evolution. NGC 1550 has no isentropic core in its entropy profile, in contrast to the predictions of `entropy-floor' simulations. We compare the scaled entropy profiles of three 1 keV groups (including NGC 1550) and three 2 - 3 keV groups. The scaled entropy profiles of 1 keV groups show much larger scatter than those of hotter systems, which implies varied pre-heating levels. We also discuss the mass content of the NGC 1550 group and the abundance profile of heavy elements.Comment: emulateapj5.sty, 18 pages, 11 figures (including 4 color), to appear in ApJ, v598, n1, 20 Nov 200

    The Enrichment History of Hot Gas in Poor Galaxy Groups

    Get PDF
    We have analyzed the ASCA SIS and GIS data for seventeen groups and determined the average temperature and abundance of the hot x-ray emitting gas. For groups with gas temperatures less than 1.5 keV we find that the abundance is correlated with the gas temperature and luminosity. We have also determined the abundance of the alpha-elements and iron independently for those groups with sufficient counts. We find that for the cool groups (i.e. kT <1.5 keV) the ratio of alpha-elements to iron is ~1, about half that seen in clusters. Spectral fits with the S, Si and Fe abundances allowed to vary separately suggest the S/Fe ratio is similar to that seen in clusters while the Si/Fe ratio in groups is half the value determined for richer systems. The mass of metals per unit blue luminosity drops rapidly in groups as the temperature drops. There are two possible explanations for this decrease. One is that the star formation in groups is very different from that in rich clusters. The other explanation is that groups lose much of their enriched material via winds during the early evolution of ellipticals. If the latter is true, we find that poor groups will have contributed significantly (roughly 1/3 of the metals) to the enrichment of the intergalactic medium.Comment: 19 Pages with 2 figures, Accepted for publication in the Astrophysical Journa

    Impacts of a flaring star-forming disc and stellar radial mixing on the vertical metallicity gradient

    Get PDF
    Using idealized N-body simulations of a Milky Way-sized disc galaxy, we qualitatively study how the metallicity distributions of the thin disc star particles are modified by the formation of the bar and spiral arm structures. The thin disc in our numerical experiments initially has a tight negative radial metallicity gradient and a constant vertical scaleheight. We show that the radial mixing of stars drives a positive vertical metallicity gradient in the thin disc. On the other hand, if the initial thin disc is flared, with vertical scaleheight increasing with galactocentric radius, the metal-poor stars, originally in the outer disc, become dominant in regions above the disc plane at every radii. This process can drive a negative vertical metallicity gradient, which is consistent with the current observed trend. This model mimics a scenario where the star-forming thin disc was flared in the outer region at earlier epochs. Our numerical experiment with an initial flared disc predicts that the negative vertical metallicity gradient of the mono-age relatively young thin disc population should be steeper in the inner disc, and the radial metallicity gradient of the mono-age population should be shallower at greater heights above the disc plane. We also predict that the metallicity distribution function of mono-age young thin disc populations above the disc plane would be more positively skewed in the inner disc compared to the outer disc
    corecore